

DIFERENTES PRODUTOS DO SENSORIAMENTO REMOTO COMO AUXÍLIO NO MAPEAMENTO DE SOLOS

Demattê, J.A.M.¹; Camargo, W.P.²; Fiorio, P.R.⁴; Nanni, M.³;

RESUMO

O objetivo deste trabalho foi o de obter e comparar informações de mapas de solos obtidos por fotografias aéreas (FA), cartas planialtimétricas e espectroradiômetro (faixa de 400-2500 nm). A área apresenta-se na região de Mogi-Mirim,SP, cujo mapa de solos foi obtido a partir de 4 diferentes metodologias, a saber: 1) execução do mapa detalhado por metodologia convencional; 2) elaboração do mapa usando foto interpretação; 3) obtenção do mapa pela avaliação estatística de dados radiométricos; e 4) utilização de dados radiométricos, associado a FA e planialtimetria. Os mapas também foram comparados com um de nível semi-detalhado. As curvas espectrais discriminaram as diferentes unidades de solos, indicando a presença de ferro, quartzo, caulinita, minerais 2:1 e gibbsita. As metodologias utilizando sensoriamento remoto, apresentaram mapas de solos similares ao mapa detalhado e substancialmente melhores que o semi-detalhado. O melhor mapa foi determinado pela metodologia 4.

DIFFERENT REMOTE SENSING PRODUCTS AS ASSISTANT ON SOIL MAPPING

ABSTRACT

The objective of the present manuscript was to obtain and compare informations of soil maps determined by aerial photographs, and spectroradiometry (wavelength from 400-2500nm) methods. The region occurs at Mogi-Mirim, SP, region, where soil maps obtained by different methods were carried out by 4 methodologies, as follows: 1) execution of a detailed soil map by conventional method; 2) obtention of a map using aerial photographs; 3) obtention of a soil map by statitical method using spectral data; e 4) Association of radiometric data and aerial photographs. Also, the maps were compared with a semi-detailed soil map. Spectral curves discriminated the different soil units, indicating presence of iron, quartz, kaolinite, 2:1 minerals and gibbsite. The remote sensing methodologies, presented soil maps similar as the detailed map, and quite better than the semi-detailed map. The best map was determiend by methodology number 4.

¹ Prof. do Dep. de Solos e Nutrição de Plantas, Laboratório de Geoprocessamento aplicado ao Planejamento do uso da terra; ESALQ/USP, Piracicaba, SP; e-mail: jamdemat@carpa.ciagri.usp.br

² Engenheiro Agrônomo; e-mail: wlady6@hotmail.com

³ Engenheiro Agrônomo; Universidade Estadual de Maringá; mrnanni@uem.br

⁴ Doutorando do curso de Solos e Nutrição de Plantas – ESALQ/USP, Laboratório de Geoprocessamento Aplicado ao Planejamento Agrícola, Piracicaba, SP; e-mail: prfiorio@carpa.ciagri.usp.br

INTRODUÇÃO

O Brasil com seu enorme potencial agrícola e área a ser explorada (8,5 milhões de Km²) não pode deixar de conhecer melhor os seus solos. Apenas 5% da superfície terrestre foi mapeada na escala 1:25000, 15-20% 1:100000 e 35% 1:250,000. Nesse contexto, não só pedólogos mas também àqueles ligados ao manejo devem trabalhar juntos em novas técnicas e metodologias que caracterizem os solos e determinem sua variabilidade espacial.

Dentre as novas tecnologias, está o sensoriamento remoto (SR), cujo produto mais antigo é a foto aérea (FA). Os benefícios e as relações solo x paisagem trazidas por este produto na área de cartografia é inegável. Porém, será que foi totalmente explorada? Será que todos os profissionais se utilizam dessa ferramenta da maneira mais eficiente e adequada? Além das FA, a radiometria vem sendo utilizada na avaliação dos solos. (Stoner & Baumgardner, 1981; Formaggio et al, 1996; Demattê & Garcia, 1999), demonstraram a importância e a possibilidade de caracterizar os solos por sensores remotos ao nível terrestre (no campo ou laboratório). Por outro lado, e num passo seguinte, outros trabalhos demonstraram metodologias e/ou técnicas que efetivamente podem ser aplicadas no mapeamento (Andromikov et al. 1991). Nesse aspecto observa-se a necessidade de trabalhos de radiometria que seja efetivamente aplicados ao mapeamento.

O objetivo do presente trabalho, portanto, é o de avaliar técnicas de SR, como auxílio no mapeamento de solos. Para tanto, foi comparado um mapa detalhado de solos com mapas obtidos por FA e dados espectrais (obtidos por espectroradiômetro em laboratório) através de avaliações qualitativas e quantitativas, comparados por análises estatísticas e SIG. Como hipótese de trabalho é levado em consideração que cada classe de solo apresenta uma assinatura espectral diferente, o que, associado ao relevo, permite a separação destes e consequentemente seu mapeamento.

MATERIAL E MÉTODOS

Caracterização da área de estudo e execução do levantamento de solos - A área localiza-se no município de Mogi-Mirim, SP, (latitude 22º19′55′′ 22º18′55′′e longitude 46º53'00′′ 46º51'23′′, WGS84). A região é caracterizada por apresentar rochas do Pré-Cambriano e a precipitação média anual é de 1547 mm e a temperatura média é de 21,7°C.

Foi desenvolvido, como verdade de campo, um mapa de solos detalhado denominado de *mapa* 1. Através de mapa planialtimétrico (escala 1:4000) toda a área foi percorrida. Pontos de tradagens, em transceções topossequenciais foram demarcados. Em tais pontos foram retiradas amostras de terra, em 3 profundidades, 0-20; 40-60 e 80-100 cm, todas georreferenciadas com GPS, num total de 21 pontos. Nas amostras foram realizadas analises químicas, físicas e mineralógicas. A cor das amostras de terra foi determinada por colorímetro Minolta CR300.

Todos os dados georrefenciados (tradagens) e cartografía da área (curvas de nível e perímetro) foram introduzidos em computador e trabalhados no programa Spring. Através da interpretação conjunta das análises de solo e planialtimetria, foram delimitadas as unidades de mapeamento. Posteriormente, foram descritos 7 perfis.

Obtenção dos dados espectrais - Para obtenção dos dados espectrais foi utilizado o sistema sensor Infra Red Intelligent Spectroradiometer na faixa de 400 a 2500 nm. As amostras

de terra passaram pelos seguintes processos: a. Secagem: feita em estufa a 45°C por 24 h; b. Moagem e peneiramento em malha de 2 mm. A geometria do sistema baseou-se na posição do sensor disposto verticalmente a 27 cm de distância sobre a amostra. A amostra foi acondicionada numa placa de petri. A fonte de iluminação, uma lâmpada com 650 W de potência halógena, foi posicionada a 61 cm da placa de petri e com um ângulo zenital de 15°. A corrente elétrica que alimenta a lâmpada foi estabilizada por uma fonte de potência. Foi utilizada como padrão de referência absoluta uma placa spectralon branca, com 100 % de reflectância calibrada. Foram realizadas 4 leituras de reflectância bidirecional para cada amostra.

Caracterização espectral e obtenção dos mapas de solos - As curvas espectrais pertencentes à uma mesma unidade de mapeamento, de acordo com o *mapa* 1, foram avaliadas qualitativamente de acordo com Stoner & Baumgardner (1981); Formaggio et al. (1996) e Demattê et al. (1999).

Mapa 1: Detalhado (verdade de campo, escala 1:4.000). A partir dos dados das análises de solo, relevo, carta planialtimétrica, conceitos de topossequência e perfis, as amostras foram agrupadas de acordo com as unidades de mapeamento e seus limites traçados. O mapa foi digitalizado e incorporado ao banco de dados do SPRING. **Mapa 2:** Semi-detalhado, foi extraído por digitalização da quadrícula de Mogi-Mirim (escala base: 1:50000; publicação: 1:100000) (Oliveira, 1992) (verdade de campo, noutro nível de escala e detalhamento). **Mapa 3:** Mapa de solos baseado na interpretação de FA escala 1:35000, com delimitação pelos conceitos solo *vs* relevo *vs* paisagem. Posteriormente, foi relacionado a possibilidade de uma classe de solo para cada grupamento. **Mapa 4:** Mapa de solos baseado em radiometria estatística. As curvas espectrais foram estratificadas em faixas de acordo com Demattê & Garcia (1999) e Nanni (2000), bem como avaliadas as alturas de intensidade de reflectância.

Feita a estratificação de reflectância das amostras de solo das camadas 0-20 e 40-60 cm, foi realizado análise de cluster. Foram agrupadas amostras espectralmente semelhantes quanto às diferentes profundidades e métodos (bandas e alturas). Cada tradagem estava em determinado grupo de cluster e foi anotado no mapa planialtimétrico. Baseado nas informações radiométricas bem como relações solos e planialtimetria, foi traçado um mapa. Posteriormente, e utilizando-se de curvas espectrais de literatura, foi sugerido o nome de uma classe de solo para cada grupo. **Mapa 5:** Mapa de solos baseado em FA e planialtimetria, tendo como apoio de campo os dados radiométricos. Nele foram plotados os pontos de tradagem georreferenciados e a planialtimetria (Escala 1:4000). Foram avaliadas quantitativamente e descritivamente as curvas espectrais de cada tradagem e correlacionadas com dados de literatura. Com isso, o traçado dos solos realizado nas FA foi alterado, de acordo com os novos fatores, obtendo-se outro mapa. Os mapas foram inseridos no banco de dados e realizada a *tabulação cruzada* entre o *Mapa* 1 com os *mapas* 2, 3, 4 e 5. Com isso, obteve-se a porcentagem de polígonos (área e ha) de erros e acertos entre o mapa "real" (*Mapa* 1) e os demais.

RESULTADOS E DISCUSSÃO

Caracterização espectral de solos - O mapa 1 de solos detalhados é apresentado na fig. 1a. Os LATOSSOLOS VERMELHOS DISTRÓFICOS Típicos (LVd) apresentam intensidade de reflectância próxima à 0,35 (Fig. 2). Apesar de argilosos, apresentam teor de ferro intermediário e presença de hematita e goethita, com predominância do primeiro conforme

verificado na forma da curva espectral em 500 e 850 nm (White et al., 1997). Além disso, foi verificada a banda da caulinita em 2200 nm e presença da gibbsita em 2265 nm (Madeira Netto, 1996). Nos ARGISSOLOS VERMELHOS DISTÓFICOS Latossólico, argilosa/muito argilosa e ARGISSOLOS VERMELHOS DISTÓFICOS Típicos, argilosa/muito argilosa (PVd2) ficou evidente a presença de quartzo pela alta reflectância, principalmente na camada C pela proximidade com o material de origem. O menor teor de matéria orgânica da camada A para a C contribui para este fato.

Nos solos com menor teor de óxido de ferro hematita, ratificado pela coloração, os ARGISSOLOS VERMELHOS-AMARELOS EUTRÓFICOS Típicos, argila/muito argilosa (PVAd1) e ARGISSOLOS VERMELHOS-AMARELOS EUTRÓFICOS Típicos, argila/muito argilosa (PVAd2) apresentaram formas espectrais diferentes. Repare que a banda da água mais OH em 1400nm bem como em 2200nm e a da água em 1900nm apresentam-se mais acentuadas (Fig. 2), indicando presença de mineralogia 2:1 (Grove et al., 1992) apesar de também apresentar mineral 1:1, eles interagem concomitantemente na banda espectral.

A associação de solo GLEISSOLO e NEOSSOLO FULVICOS (GX+RU) apresenta forma ascendente e bem diferente dos demais, o mesmo ocorrendo com a associação CAMBISSOLOS HÁPLICOS EUTRÓFICO Lépticos ou Típicos, argila/muito argilosa; NEOSSOLO LITÓLICO DISTRÓFICO (CXbe+PVAd2+RLd). No caso do CAMBISSOLOS HÁPLICOS EUTRÓFICO Lépticos ou Típicos, argila/muito argilosa (Cxbe), por apresentar-se como solo mais jovem o ferro não se encontra na forma cristalina, evidenciado pela falta da concavidade em 850 nm (Demattê & Garcia, 1999). O LATOSSOLOS VERMELHOS DISTROFÉRRICOS Típicos, muito argiloso, A moderado, mesoeutrófico (LVdf) por sua vez, demonstrou apresentar altos teores de ferro em 850 nm, presença de gibbsita em 2265 nm (Madeira Netto, 1996) e magnetita que abaixa a reflectância e atenua as feições de absorção.

Comparação entre os mapas - O mapa de solos baseado em FA apresentou-se semelhante ao mapa detalhado. A classe LVdf obteve um índice de 99% em relação ao LVd do mapa detalhado. Visto que a diferenciação entre estes dois solos baseia-se apenas no teor de ferro, pode-se dizer que este mapa obteve 99% de acerto para esta classe. A classe PVAd (1 e 2) no mapa obtido pela FA obteve baixo índice em relação aos PVAds do mapa detalhado (apenas 39% em relação ao PVAd1 e 0% em relação ao PVAd2). Solos adjacentes da topossequência, como por exemplo CXbe e PVd2 também apresentaram baixo índice de relação. O PVd, em relação ao PVAd2 obteve 99% de acerto dado ao tamanho reduzido desta classe no mapa detalhado. A associação de solos CXbe+PVAd2+RLd apresentou boa correlação com as classe PVAd1 e PVAd2 do mapa detalhado.

O mapa espectral estatístico, correlacionou-se bem com o mapa detalhado para as unidades LVdf, LVd, PVAd1, GX+RU e CXbe. A nova unidade PVd acrescentada ao mapa radiométrico teve alta correlação com a unidade PVAd1, o que é considerado um acerto, devido a condição transitória do PVd, que sempre aparece na topossequência entre um LVd e um PVAd. A unidade CXbe apresentou alta correlação com a unidade CXbe do mapa detalhado (71%). Tais resultados concordam com os de Demattê et al. (1999) onde o mapa espectral obtido também foi semelhante ao detalhado.

O mapa obtido com auxílio de FA e radiometria obteve boa correlação com o mapa detalhado para as unidades LVdf, LVd, PVAd e PVd2. A classe PVd, de forma análoga ao que aconteceu com o mapa discutido anteriormente, aparece cobrindo 15% da área de LVd, o que é

considerado um acerto. Observa-se também que o uso da radiometria permitiu melhorar o mapa em relação às FA e discriminou o LVdf do LVd, com maior semelhança na delimitação das unidades. Que fique claro porém, que até este nível não foram avaliadas análises de solo de laboratório, e, apesar disso, obteve-se um mapa semelhante ao detalhado. O mapa obtido a partir de FA apresentou um nível de detalhamento muito maior que o Mapa Semi-Detalhado pois com o primeiro foi possível discriminar 8 unidades de solo na área, enquanto que o outro discrimina apenas duas classes (Tab. 1). A classe de solo LVdf, discriminada pelo mapa Semi-detalhado, obteve apenas 56% de sobreposição com o mapa obtido pela foto. Do mesmo modo, a classe PVAd, obteve 19% para PVAd2 da FA e apenas 4% para PVAd1. Nesse caso especificamente as diferenças de escala de mapa base são menores, FA (1:35000) e semi detalhado (1:50000), e mesmo assim um maior número de unidades foi detectada. O mapa 5 (Fig.1b) discriminou 9 classes de solos contra apenas 2 no semi-detalhado (Tab. 1). A classe LVdf do Semi-detalhado obteve 25% de coincidência com a mesma classe do mapa Radiométrico. Para a classe PVAd, do Mapa Semi-detalhado, houve 6% de coincidência com PVAd2 e 20% com PVAd1 do Mapa Radiométrico. Tal resultado pode ser explicado pelo número de observações de campo, menor no semi-detalhado e bem maior no detalhado bem como diferenças na escala de trabalho. Nota-se que o mapa detalhado diagnosticou um total de 9 unidades de mapeamento contra 2 do mapa semi-detalhado, 8 do mapa 3 (FA), 8 do mapa obtido com o auxílio da radiometria e 9 no mapa 5 (Tab. 1). Note que excluindo o mapa 2 (semi-detalhado) obtido em escala diferente dos demais, as outras técnicas obtiveram praticamente o mesmo número de unidades do que o controle de campo, indicando ser tais metodologias perfeitamente aplicáveis em levantamento de solos.

CONCLUSÕES

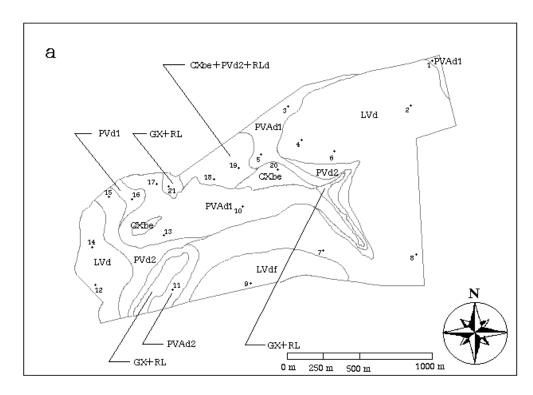
Ao longo das topossequências ocorreram alterações no material de origem e características dos solos, que foram detectadas pelos dados espectrais, sendo útil na sua caracterização, discriminação e determinação dos limites dos solos. O mapa de solos determinado pelos dados espectrais foi similar ao mapa detalhado e melhor que o semi-detalhado obtido pelo método convencional. Apesar disso, algumas áreas principalmente de transição de solos, não foram corretamente detectadas pelos dados espectrais. Das técnicas utilizadas a melhor foi a utilizando fotografias aéreas em conjunto com cartas planialtimétricas e apoio de campo de análises espectrais. A avaliação de dados espectrais demonstrou ser uma ferramenta útil no auxílio ao levantamento de solos em níveis próximos ao detalhado.

REFERÊNCIAS BIBLIOGRÁFICAS

Andronikov, V.L.; Afanas'yeva, T.V.; Simakova. Mapping the soils of the major natural zones of the USSR from remote sensing imagery. Mapping Sciences and Remote Sensing, 28, 2, pp. 109-118, 1991.

Demattê, J.A.M. and Garcia, G.J. Alteration of soil properties throungh a weathering sequence as evaluated by spectral reflectance. Soil Science Society of America Journal, v.63, n.2, p.327-342, 1999.

Demattê, J.A.M.; Campos, R.C.; Alves, M.C. Evaluation of soil Survey by spectral reflectance. In: International Conference on Applied Geologic Remote Sensing, 13, Vancouver, British Columbia, Canada. Proceedings, Erim (Ed), 1999, v.2, p.126-133.


Formaggio, A.R.; Epiphanio, J.C.N.; Valeriano, M.M.; Oliveira, J.B. Comportamento espectral (450-2450 nm) de solos tropicais de São Paulo. Revista Ciência do Solo, Campinas, v.20, p.467-74, 1996.

Grove, C.I.; Hook, S.J.; Taylor, E.P. Laboratory reflectance spectra of 160 minerals, 0.4 to 2.5 micrometais. Passadena: National Aeronautics and Space Administration, 1992, 355p.

- Madeira Netto, J.S. Spectral reflectance properties of soils. Photo Interpretation, Paris, v.34, p 59-70, 1996.
- Nanni, M. R. Dados radiométricos obtidos em laboratório e no nível orbital na caracterização e mapeamento de solos. Piracicaba, 2000. 366p. Tese (Doutorado) Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo.
- Oliveira, J.B. Levantamento pedológico Semidetalhado do Estado de São Paulo: quadrícula de Mogi-Mirim. São Paulo:IGC. Escala 1:100 000, 1992.
- Stoner, E.R.; Baumgardner, M.F. Characteristics variations in reflectance of surface soils. Soil Science Society of America Journal, v.45, n.6, p.1161-1165, 1981.
- White, K.; Walden, J.; Drake, N.; Eckardt, F.; Settle, J. Mapping the iron oxide content of dune sands, Namib Sand Sea, Namibia, using Landsat Thematic. Mapper Data. Remote Sensing Environment, v. 62, p. 30-39, 1997.

AGRADECIMENTOS

A FAPESP pela aquisição do espectroradiômetro IRIS pelo processo n. 95/6259-6.

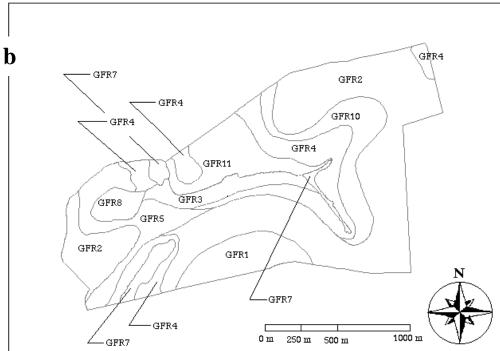
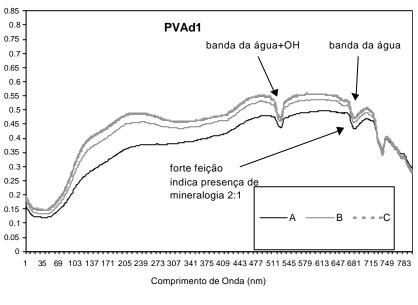
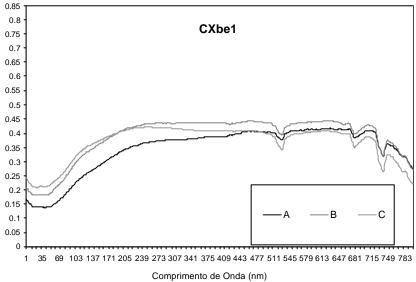




Figura 1. a) Mapa detalhado (realizado nesse trabalho) e b) Mapa obtido com auxílio de foto aérea, planialtimetria, radiometria descritiva e analítica. Siglas: GFR1- LVdf, GFR2- LVd, GFR3- PVAd2, GFR4- PVAd1, GFR5- PVd1, GFR7- GX+RL, GFR8-CXbe, GFR10- PVd, GFR11- PVAd1+CXbe+RL, referentes aos solos. Ver resultados e discussão. Os números referem-se aos polígonos inferidos para a análise de tabulação cruzada.

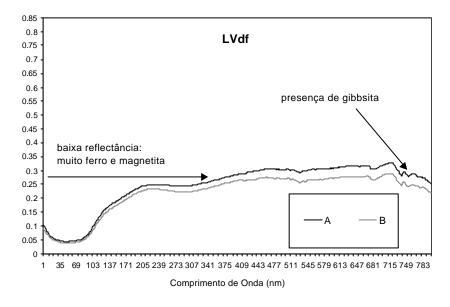


Figura 2. Curvas espectrais médias das camadas A,B e C (0 - 20, 40 - 60 e 80 - 100 cm respectivamente) de algumas unidades de mapeamento.

Tabela 1. Número de unidades de mapeamento e/ou polígonos determinados pelas diferentes metodologias.

Unidades de Mapeamento	Número total de
Grupamentos Determinados	polígonos de cada unidade
Grupamentos Determinados	pongonos de cada umdade
MAPA1 (Detalhado)	
LVdf 1	
LVd	2
PVAd2	1
PVAd1	2
PVd1	1
PVd2	2
GX+RL	3
Cxbe	2
	1
CXbe+PVd2+RLd Total	15
Total	13
MAPA2 (Semidetalhado)	
LVdf	1
PVAd	2
Total	3
MAPA3 (Foto aérea)	
GF2 (LVd)	to aerea) 2
GF3 (PVAd2)	1
GF4 (PVAd1)	2
	1
GF5 (PVd1)	
GF7 (GX+RL)	3
GF8 (CXbe1)	1
GF10 (PVd)	1 1
GF12 (CXbe+PVAd+RL) Total	12
MAPA4 (Radiometria)	
GR1 (LVdf)	1
GR2 (LVd)	2
GR3 (PVAd2)	2
GR4 (PVAd1)	1
GR5 (PVd1)	1
GR7 (GX+RL)	2
GR8 (CXbe1)	1
GR10 (PVd)	2
Total	12
MAPA5 (Foto aérea + radiometria)	
GFR1 (LVdf)	a + radiometria) 1
GFR2 (LVd)	2
GFR3 (PVAd2)	1
GFR4 (PVAd1)	5
GFR5 (PVd1)	1
GFR7 (GX+RL)	3
GFR8 (CXbe1)	1
GFR10 (PVd)	1
GFR11(PVAd1+CXbe+RL)	1
Total	16
- 3164	- •