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ABSTRACT- The capability of spaceborne SAR for monitoring tropical forest  areas is assessed, using 
three ERS-1 images from the Tapajos region of Amazonia gathered in 1992 and a single JERS-1 image of 
the same area acquired in 1993. The multi-temporal ERS-1 data indicate that forest areas display a stable 
RCS, while in some case222 non-forest areas exhibit changes which appear to be associated with soil 
moisture variations, with greatest 
discrimination between forest and non-forest after a dry period. Change detection techniques are 
compared and their ability to classify forest and non-forest are quantitatively assessed, assuming that a 
forest map inferred from a 1992 Landsat TM image is correct. Even in the best case, less than 50% of the 
non-forest region is detected using ERS-1. This figure may be improved by more frequent image 
acquisition, but there appear to be fundamental limitations in using C band data, since even comparatively 
low levels of standing biomass mask the soil moisture changes which drive the discrimination. At the 
longer wavelength of JERS-1, much better classification is possible, but the correction of topographic 
distortions is likely to present problems. 

 
I INTRODUCTION The decreasing extent of the 
world's tropical forests due to anthropogenic activity is 
well documented (Skole and Tucker, 1993) and its 
possible impact on the global environment is an area of 
international concern.  Spaceborne synthetic aperture 
radar (SAR) has the potential to provide timely 
information on the extent of these changes due to its 
near global coverage, regular revisit time and cloud 
cover penetration.  This paper assesses the capabilities 
and limitations of SAR for tropical forest monitoring, 
using both multitemporal data from the ERS-1 C band 
SAR and also the longer wavelength L band data 
provided by JERS-1. 

For ERS-1, a key observation is that areas of 
primary tropical forest exhibit very stable radar 
backscatter (Lecomte and Attema, 1993), while in some 
cases areas of pasture and bare soil show temporal 
variation associated with rainfall. A dataset from the 
Tapajos region of Brazilian Amazonia (described in 
Section II) is used to investigate the extent to which this 
behaviour can be exploited to provide a quantitative 
measurement of forest cover. This requires methods for 
identifying changes between images gathered at 
different times.  In addition, pre-processing is necessary 
in order to combat image speckle.  The first part of 
Section III describes and compares a variety of 
automatic methods to perform this task, and derives 
performance measures on the basis of a forest map 
extracted from Landsat TM data. The latter part of 
Section III provides a limited comparison with JERS-1, 
which makes clear the likely advantages to be gained by 
operating at longer wavelengths. Implications of these 

results and unresolved issues are discussed in Section 
IV. 

II. TEST SITE AND DATA DESCRIPTION 
The test site relevant to this paper lies to the west of the 
River Tapajos, at approximately 3° South and 55° West.  
It contains a range of ground cover types, with many 
cleared  plots of land and regenerating forest of 
different ages adjacent to the primary forest  in the 
protected  Tapajos National Forest (FLONA Tapajos). 
Because of its use over a long period as a study area by 
INPE, there are large amounts of ground data available 
for this area, which were supplemented by 
measurements and an extensive land use survey carried 
out during fieldwork in August 1994. 

The SAR analysis is  based on three calibrated 
ERS-1 three-look PRI images gathered on 22/05/92, 
31/07/92 and 18/12/92 and a single JERS-1 image from 
26/06/93. The ERS-1 images are from the 35-day repeat 
cycle and hence have nearly identical geometry, which 
removes any severe registration problems.  The data  
has resolution of the order of 9.7m × 18m (slant range × 
azimuth), with an equivalent ground range resolution 
lying between 22m at far range and 29m at near range, 
but were supplied at a pixel spacing of 12.5m × 12.5m 
(ground range × azimuth).  JERS-1 provides three-look 
data with a resolution of 18m × 18m at the same pixel 
spacing as ERS-1.  The incidence angle of the 
measurements is around 33° instead of the 23° of ERS-
1.  In addition, a relatively cloud-free Landsat TM 
image of Tapajos from 29/7/92 is available.  All 



subsequent images of Tapajos have been too affected by 
cloud cover to be of use. 

 III. DATA ANALYSIS 

A.  ERS-1 
The importance of multi-temporal data if ERS-1 is to be 
used in tropical forest monitoring is well illustrated by 
Figures 1(a) and 1(b). These show a section of  the July 
and December images respectively, with radar cross-
section (RCS) displayed in dB form. In the July image 
little structure is apparent, and the mean RCS exhibits 
only small variations across the region. Similar remarks 
apply to the May image. In December, large parts of the 
image have unchanged RCS, but other areas now show 
reduced backscatter (up to 3 dB), and structural 
components of the area are much clearer.  Features to 
note are a large square area of farmland (bottom of the 
image, right of centre), the adjacent Santarem-Cuiaba 
highway running from top to bottom of the image and 
the two smaller highways perpendicular to it.  A variety 
of cover types occurs along the highways, related to 
shifting agriculture and settlements.  Most of the rest of 
the region shown is covered by forest. 

Fieldwork established that the areas exhibiting 
reduced RCS in December were predominantly areas of 
pasture or low vegetation, and meteorological data 
indicate that the reduced RCS in December coincided 
with drier conditions (despite December being in the 
wet season and July being in the dry season for this 
region of Amazonia). Simple backscatter models are 
capable of explaining the observed behaviour (Grover 
et al, 1996), but in this paper we deal solely with the 
implications of these empirical observations for forest 
discrimination. 

Figure 1 indicates that, in ERS-1 data, areas of 
non-forest may exhibit significant changes in RCS with 
time, which provides a means of discriminating forest. 
In order to detect change, differences of amplitude or 
intensity data are not useful because of the 
multiplicative nature of speckle, and image ratioing is to 
be preferred (Rignot and van Zyl, 1993). (Note, 
however, that this is equivalent to differencing of log 
images, which in practice is how the ratioing is carried 
out in the work described below.)  This also has the 
advantage of removing the multiplicative modulation of 
RCS caused by variations in the incidence angle which 
can cause major problems in interpreting SAR data in 
hilly terrain.  Since significant relief is a common 
feature in many tropical forest areas (though not a 
serious issue in Tapajos), this is important. 

Direct ratioing of SAR images with only a small 
number of looks produces images which are unusable 
for classification, because of the  effects of speckle 
(Rignot and van Zyl, 1993), and pre-processing is 
needed. We here compare four methods of reducing 
speckle before ratioing:    
• block averaging;   
• filtering using the local gamma maximum a 

posteriori (GMAP) filter  (Lopes et al, 1993);   
• global MAP estimation using simulated annealing 

(Geman and Geman, 1984;    White, 1994);   
• image segmentation (White, 1991; Caves and 

Quegan, 1995).  
These four methods, described in more detail below, 
may be regarded as imposing progressively stronger 
models on the data.  

The use of block averaging has been studied by 
Rignot and van Zyl (1993) who dealt with the simplest 
case, in which change occurs in two classes of equal 
area and the total error probability is minimised. In this 
case, a threshold of 1.5 dB is optimal for separating 
classes of which one remains constant and the other 
changes by 3 dB. Adopting the 1.5 dB threshold and 
using an 18 × 18 window (corresponding to 
approximately 240 independent samples after spatial 
correlation in the ERS-1 data is taken into account) 
would give a total error rate well below 1% for a 3 dB 
change in RCS. A more sophisticated calculation would 
allow for the fact that the areas of forest and non-forest 
are different, but this refinement is not pursued here. 
Figure 2(a) shows the effects of this operation, with 
white areas indicating where the July image exceeds the 
December image by at least 1.5 dB. Note the 
suppression of topographic features by this process, 
which is easily observed by comparing Figure 2(a) with 
1(b). 

A more refined approach to smoothing speckle is 
provided by the GMAP filter, which gives the local 
maximum a posteriori (MAP) estimate of the underlying 
RCS under the assumption that it is gamma distributed  
(Lopes et al, 1993). It is here applied in its locally 
adaptive form, which tests for structure (point targets, 
lines, edges) in the processing window before 
deciding which parts of the window are suitable for 
carrying out the RCS estimate. Where features are 
detected, less averaging is carried out,  while lack of 
features and little underlying scene texture causes the 
filter to perform block averaging. Since its behaviour 
relies on theory developed for uncorrelated pixels, the 
images were pre-averaged by a factor of four to reduce 
spatial correlation between pixels. This gives rise to an 
approximately 5-look image containing nearly 
uncorrelated pixels. The pre-averaged images were then 



filtered using a 9 × 9 window, corresponding to 18 × 18 
in the original data. The result of thresholding the 
difference of the log images at 1.5 dB is shown in 
Figure 2(b). 

While the GMAP filter gives local estimates of the 
RCS, a constrained global MAP reconstruction of the 
RCS can be estimated using simulated annealing 
(Geman and Geman, 1984). Here we apply a version of 
this approach suitable for SAR images which was 
developed by White (1994). The July and December 
images were annealed separately after pre-averaging by 
a factor of four, as for the GMAP filter.  The difference 
of the log of the July and December images after 
thresholding is shown in Figure 2(c).   

A different approach to obtaining the underlying 
radar cross section is to first segment the image. The 
segmentation algorithm described in White (1991) has 
been modified to operate on multi-dimensional data  
(Caves and Quegan, 1995), and its modified form  was 
used to provide a segmentation from all three available 
dates and also using just the July and December images. 
The operation is fully automatic and only requires the 
probability of an edge detection in pure speckle to be 
selected; this was set at 10-4. The pixels within a 
segment were set to the mean backscatter within the 
segment and the effects of thresholding the difference 
of the ensuing log images is shown as Figure 2(d). 

From Figure 2, it can be seen that all the methods 
pick out the large square area of farmland, as well as 
other areas of non-forest situated along the Santarem--
Cuiaba highway and on the two other perpendicular 
roads, but there are marked differences in the results. 
Block averaging (Figure 2(a)) produces regions with 
little internal detail and smooth edges, as would be 
expected for such a large window size. Several regions 
of change are detected within the forested areas, 
possibly due to speckle fluctuations. The GMAP filter 
(Figure 2(b)) gives a very noisy and unsatisfactory 
result, with many detections of small isolated regions. 
This is qualitatively different from each of the other 
methods, where the change detections in the forest areas 
form larger regions. The performance of the filter did 
not improve markedly even when window sizes as large 
as 15 × 15 were used.  Simulated annealing (Figure 
2(c)) shows considerable detail in its detection of the 
main structural blocks, with retention of complex 
boundaries. Some of the smaller regions detected in the 
forested areas by averaging are also in the annealed 
image, but there are many differences in detail. Note the 
incomplete suppression of topographic effects; for 
example, the drainage feature to the right of the square 
of farmland (compare with Figure 1) gives rise to a 
number of small regions in Figure 2(c). Such effects 

could arise due to misregistration at the sub-pixel level.  
Segmentation (Figure 2(d)) gives results somewhere in 
between those of averaging and annealing as regards 
detailed structure, and appears to produce fewer isolated 
small features than any of the other methods. Note that 
it does not do as well as either averaging or annealing at 
detecting the area of change above the top right corner 
of the square pasture area.  

B. Comparisons with TM  
The performance of ERS-1 as a forest discriminator 
using these different approaches can be put on a 
quantitative basis by using the Landsat TM image from 
29/7/1992. As a preliminary step, the TM and ERS-1 
data were co-registered by resampling both images to a 
pixel size of 25m by 25m and then using ground control 
points to define a rotational and translational fit 
between the two images.  The accuracy of the image 
registration has only a minor effect on the  results 
discussed below, as long as the errors correspond to 
shifts by a small number of pixels. A forest/non-forest 
template was then prepared by thresholding band 5 of 
the TM data, to give Figure 3(a), in which 77.7% of the 
area is classified as forest. This allows a per-pixel 
comparison between the pre-processed ERS-1 data and 
Landsat TM to be performed, assuming that the TM 
map of forested areas is correct. 

Results are summarised in Table 1.  The first 
column shows, for each pre-processing method, the 
proportion of pixels detected as non-forest in the ERS-1 
data classified as non-forest in the TM image.  The 
second column shows the proportion of correctly 
detected forest pixels and the third column gives the 
area of false non-forest detections, as a proportion of 
the correct non-forest area. Certain non-forest areas 
detected by Landsat TM are not detected using ERS-1 
for any of the pre-processing techniques (for example, 
the non-forest region protruding from the left side of the 
square area of farmland seen in the  TM data of Figure 
3(a) is not present in any of Figures 2(a) -- (d)).  This is 
reflected in the low percentage of non-forest pixels 
found using ERS-1.  Likely causes are significant soil 
roughness or secondary vegetation, both of which  can  
lead to radar returns similar to primary forest at C band 
(Grover et al, 1996). 

Averaging blocks of pixels causes loss of detail 
and poor definition of edges of the larger areas, as can 
be seen in Figure 2(a).  Both these effects contribute to 
simple averaging giving the lowest percentage of non-
forest detections (other than two-date segmentation). 
Annealing and three-date segmentation give similar 
performance; annealing does slightly better, but the 
percentage of non-forest pixels detected is only 45.7%. 



Use of the GMAP filter appears from Table 1 to give 
better detection performance, but at the expense of 
significantly higher misclassification of forest pixels. 
Perhaps more important than the increased 
misclassification from GMAP is the nature of the errors. 
The fact that less than 50% of the non-forest pixels are 
detected by the other methods would seem to indicate a 
performance worse than randomly guessing at each 
pixel. However, the errors are clearly not spatially 
random, as is obvious from inspection of Figures 2(a), 
2(c) and 2(d). By contrast, the errors in GMAP have 
much more of this spatially random quality, making this 
type of pre-filtering the least useful of those examined. 

C. Processing Costs 
An important issue in evaluating the pre-processing 
techniques is the computing power required. Table 2 
shows the total CPU time for each of the  techniques for 
a Sun Sparc10 machine.  All methods started from 
images of 880 × 992 pixels; these were averaged by 
a factor of four for all methods except pixel averaging.  
Pixel averaging, GMAP and annealing all work on 
single frame images, but the times given correspond to 
processing two frames, which is the total time needed to 
form a difference of two log images. The segmentation 
algorithm works simultaneously on all channels of the 
multitemporal data, and inserts the mean value within 
each ensuing segment for each channel. The time given 
is for segmenting images from two dates. It is clear that 
the improved accuracy offered by annealing or 
segmentation is achieved at the cost of significantly 
increased machine time. Note that the time given for 
averaging is not for an optimised algorithm, and could 
be greatly improved. Recent work has indicated that the 
annealing algorithm could probably be made two or 
three times faster, but no ways of speeding up the 
segmentation code have yet been found. 

In an operational context, the implications are that 
large-scale surveys to detect change can be carried out 
by using simple averaging, at the expense of lost detail 
and inability to detect small areas. Simulated annealing 
offers a more powerful approach which, after code 
optimisation, may be competitive with averaging, or 
which could be used to refine the classifications found 
by averaging. 

D. Comparisons with JERS-1  
A major limitation of ERS-1 is its  short wavelength 
which prevents  significant penetration into the 
vegetation canopy. As a result, even low vegetation or a 
comparatively young regenerating forest canopy may 
appear to the radar to be similar to primary forest. The 

age dependence of RCS has been studied for the 
Tapajos area by Yanasse et al (1995), who 
demonstrated that for large samples there are detectable 
differences, but that RCS is only weakly sensitive to age 
once biomass exceeds comparatively low levels (the 
saturation noted by several authors).  At the longer 
wavelength of JERS-1, much greater penetration into 
the canopy occurs, and allows much more sensitive 
discrimination. The improved discrimination at L band 
is illustrated by Figure 3(b) which shows the JERS-1 
data corresponding to Figure 1, after simulated 
annealing of a single image and thresholding at -9 dB. 
In the JERS-1 image, 25.8% of the area is detected as 
non-forest, as compared with 22.3% by TM. 
Comparison with Figure 3(a) indicates how closely 
related the detections of the non-forest areas are in the 
two sensors. The larger overall estimate of non-forest 
area by JERS-1 appears to be because many of the non-
forest areas detected by JERS-1 are less fragmented 
than in the TM data (compare the highways at the top 
right and bottom left in the two images). The detection 
rates (corresponding to Table 1) are  p{NF|NF} = 0.841 
and p{F|F} = 0.910. False non-forest detections in 
JERS-1 are 12.4% of the true non-forest area 
determined from the TM data. 

Figure 4 illustrates even more dramatically the 
different discriminating powers of the two SAR sensors. 
Figures 4(a) -- (c) show  TM data,  ERS-1 data and  
JERS-1 data respectively from a rougher area of pasture 
land than that dealt with in Figures (1) -- (3). The TM 
and JERS-1 data were treated as in Figure 3 and the 
ERS-1 image is the result of thresholding the difference 
of the July and December log images at 1 dB after 
simulated annealing. The most obvious feature to note 
is that the large area of pasture revealed in the TM and 
JERS-1 images is invisible in the corresponding ERS-1 
images. This may reflect the presence of numerous 
small shrubs in this area of pasture, or different soil 
moisture conditions (see Grover et al, 1996). Also to be 
noted in this image is that JERS-1 finds areas of non-
forest not in the TM image. The JERS-1 data was 
gathered a year later than the TM image, and this 
difference may correspond to real change, but we do not 
have information to verify this. 

 IV. DISCUSSION 
The empirical analysis presented above illustrates a 
means of quantitatively comparing the performance of 
possible approaches to forest discrimination. Modelling 
suggests that for ERS-1 the physical parameter 
providing the discriminant is soil dielectric, and that the 
problems in its use as a forest discriminator reflect 
fundamental properties of the imaging process, namely 



that the radar signal is attenuated sufficiently, even by 
low canopies, to prevent detection of this soil signature. 
In addition, both observations and models indicate that 
RCS is only weakly sensitive to biomass, except at low 
biomass levels (Grover et al, 1996), so that even low 
vegetation canopies will give rise to returns very similar 
to those from a full forest canopy. Set against this, it 
must be noted that the ERS-1 images used in this study 
are the only ones available giving good coverage of the 
Tapajos test site, due to acquisition difficulties at the 
Cuiaba receiving station. It is not known whether a 
more complete set of data throughout the year might 
provide greater differentiation between the forest and 
non-forest areas. Acquisitions during more prolonged 
periods of dry weather may reveal greater effects. It is 
also possible that a regular time series of images may 
allow a satellite of the same type as ERS-1 to detect 
changes in forest boundaries, by locating regions where 
felling has taken place before significant regrowth 
occurs. Since images under wet and dry conditions 
would also be needed, the temporal sampling required 
would need to be based on RCS saturation time for 
regrowth, rainfall probability as a function of season 
and seasonal likelihood of forest clearance. This 
analysis is needed if an operational forest monitoring 
system based on C band is to be considered.    

An important distinction between the use of JERS-
1 and ERS-1 is that, at L band, modelling indicates that 
there is likely to be little variation in RCS as a result of 
rainfall. The use of ratio images to remove relief effects 
is therefore likely to be ineffective, and this could 
seriously affect the value of the data, unless other means 
of correcting for terrain effects on backscatter are used.  
The study area used in this paper has offered little 
chance to properly test how effective image ratioing is 
in removing relief effects. Assessment of both ERS-1 
and JERS-1 in areas of higher relief would be very 
desirable.  
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 p{NF|NF|} p{F|F} p{F}p{NF|F}/p{NF} 
Averaging (18 by 18) 0.420 0.942 0.156 

GMAP (9 by 9)  0.467 0.931 0.180 
Anneal 0.457 0.942 0.157 

Segmentation (3 dates) 0.453 0.940 0.164 
Segmentation (2 dates) 0.401 0.950 0.135 

Table 1. Classification accuracies of the pre-processing 
methods 

 CPU time (secs) 
Averaging (18 by 18) 420 

GMAP (9 by 9) 54 
Anneal  2520 

Segmentation (2 dates) 3467 
  Table 2. Computational cost 

Figure Captions 
Figure 1. (a) Section of ERS-1 PRI image acquired on 
July 31, 1992. (b) Corresponding image from December 
18, 1992.   
Figure 2. The effect of thresholding the difference of 
the July and December log images after  four types of 
speckle reduction: (a) 18 × 18 block averaging; (b) 
GMAP filtering; (c) simulated annealing, and (d) 
segmentation.   
Figure 3. (a) Forest/ non-forest map derived by 
thresholding band 5 of Landsat TM data acquired on 29 
July, 1992. (b) Corresponding section of JERS-1 image 
acquired on June 26, 1993.   
Figure 4. (a) Thresholded TM image containing an area 
of rough pasture land. (b) Corresponding ERS-1 image 
formed by thresholding the difference of the July and 
December log images at 1 dB after simulated annealing. 
(c) Corresponding JERS-1 image after simulated 
annealing and thresholding at -9 dB. 
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