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Abstract.  In  landscape  ecological  studies,  the  use  of  landscape  pattern  metrics  computed  from  spectrally 
classified digital images is becoming increasingly common. Recently, object-orientated image classification is 
being seen as an alternative and is tending to replace pixel-based approaches. However, object-based methods 
are likely to influence and produce biases in the results of these spatial analyses. In this study, the sensitivity of  
85  landscape  metrics  to  different  classification  methods  (pixel-based  versus  object-based)  are  analyzed.  A 
Landsat image of a complex mountainous forest region of Mexico was classified using pixel-based and object-
based approaches. Nine object-based classified images were obtained using a region-growing algorithm based 
upon different segmentation parameters. Pixel-based classified images were smoothed using different methods 
(majority filtering, sieving and clumping). Accuracy assessment was carried such that classified images with 
similar accuracy were compared. Landscape metrics were then derived from the different classified images and 
compared  through  a  coefficient  of  variation  computing.  Almost  all  the  metrics  showed  variability  due  to 
classification  and  post-processing  methods,  particularly  core  area  metrics  and  some  proximity  and 
contagion/interspersion  indices.  Caution must  be  observed  when comparing  values  of  metrics  derived  from 
images with slight differences in their characteristics or in the way they have been processed as, for example, in 
landscape monitoring studies based upon multidate imagery.

Palavras-chave: landscape patterns metrics, fragmentation indices, object-oriented classification, pixel-oriented 
classification. 

1. Introduction
Identifying  and  characterizing  spatial  patterns  of  landscape  are  often  necessary  in 

landscape  ecological  studies.  Over  the  last  decades,  such  studies  have  benefited  from a 
proliferation  of  metrics  for  characterising  landscapes  (Frohn,  1998;  Gustafson,  1998; 
McGarigal  and Cushman,  2002; Vogt et  al.,  2007).  Typically,  remote  sensing images  are 
classified using  algorithms that utilise the spectral values of individual pixels without making 
use of spatial  information in the image such as the spectral  response of the neighbouring 
pixels.  Alternative approaches, such as object-oriented classification, which use neighbouring 
pixel information, are increasingly used by the remote sensing community. In object-oriented 
classification, homogeneous image objects are first extracted and subsequently classified. The 
mapping results thus represent real-world objects and lack the salt-and-pepper appearance of 
pixel-based classified images.

The characteristics of the remotely sensed images and the methodologies applied for their 
processing and classification may strongly influence the spatial  characteristics of the land 
cover  data  from  which  spatial  metrics  are  calculated.  Recently,  object-orientated  image 
classification  is  tending  to  replace  pixel-based  approaches.  Pixel-based  and  object-based 
oriented approaches produce classified images with different spatial patterns. However, there 
is  no study aimed at  assessing the effects  of these classification  approaches  in  landscape 
pattern evaluation. This paper aims at assessing the effects of the classification method (pixel-
based  versus  object-based)  and  of  the  parameters  used  to  carry  out  object-oriented 
classifications on landscape metrics.
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2. Study area and data
The study area is located in the State of Michoacán, central west Mexico, and covers an 

area of approximately 58 x 60 km2 (Figure 1). It is a mountainous region, with elevation 
ranging from 220 to 3830 m. The area is  a complex mosaic of  several  land cover  types 
including temperate  pine and oak forest,  dry tropical  forest,  orchard,  bare soil,  crops and 
pasture lands. This spatially complex area was chosen to highlight the differences between the 
image processing approaches.

Figure 1. Location of the study area. Left side of the figure are two sketch maps indicating Mexico and  
Michoacán state where the study area is located; right side is the false colour composite of Landsat 
image. 

3. Methods
The available data comprise a geometrically corrected Landsat ETM+ image obtained on 

16/Feb/2003; ortho-corrected air photographs and a land cover map from the National Forest 
Inventory  2000  (Mas  et  al.,  2002).  Image  segmentation  was  performed  using  the  image 
processing package SPRING (Câmara et al.,  1996). The landscape metrics were generated 
using the FRAGSTATS program version 3.3 (McGarigal and Cushman, 2002; McGarigal et 
al., 2002).

The research had several major components: i) land use / cover classification; ii) accuracy 
assessment  of  classified  images  iii)  computation  of  landscape  metrics;  (iv)  sensitivity 
measurement; and (v) interpretation and analysis. This section provides the technical details 
for the first four procedures (Figure 2).

Figure 2. Flow chart of image processing steps. 
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3.1 Image classifications
Training areas for eight land cover categories (irrigated agriculture, rainfed agriculture, 

grasslands, orchards, dry tropical forest, temperature forest, human settlement and, bare land) 
were defined using the Landsat image, the air photographs and field data. Classifications were 
carried out using the standard pixel-based maximum likelihood method and an object-oriented 
classification,  based  upon  two  steps.  First  a  segmentation  based  upon  a  region-growing 
algorithm was carried out. In order to control the segmentation procedure, two parameters 
were used, “similarity” and “area”. “Similarity” is a threshold value that determines whether 
two neighbouring  objects  are  merged,  while  the “area” threshold is  used to  filter  out  the 
objects smaller than this value (Bins et al., 1996). A set of classified images was produced 
using the same parameter  “area”  and a  range of  values  for  “similarity”.  Then,  the  entire 
objects were classified by majority voting whereby pixels of each object are assigned to the 
most frequent class using the pixel-based.

In order to suppress the salt-and-pepper effect of pixel based classified images,  two post-
classification  processing  techniques  were  applied:  1)  applying  a  clumping  (3x3  pixels) 
analysis to remove the scattered pixels; 2) applying a majority filter (3x3 pixels), and then 
sieving to remove the remaining small patches, in which two sieving threshold values were 
applied, based on kernels of 2x2 pixels and 5x5 pixels. These two processes produced three 
pixel-based classified images. A GIS procedure was applied to eliminate patches with an area 
below the minimum threshold area used during the segmentation procedure.

3.2. Classification accuracy
The accuracy of classification for all images was evaluated with ground data comprising 

305  random  points.  Point´s  category  was  determined  by  visual  interpretation  of  the  air 
photographs and by field visits for ambiguous cases. The accuracy values of the classified 
images were compared to evaluate the significance of the difference in accuracies of each pair 
of classifications. As the same set of ground truth data were used to assess the accuracy of the 
classified  images  to  be  compared  (related  samples),  the  statistical  significance  of  the 
difference between the two accuracy statements was evaluated using McNemar’s test, which 
takes into account the lack of independence between samples (Foody, 2004). Only classified 
images  which  present  a  similar  accuracy  (no  significant  difference  at  p  =  0.05)  were 
considered in the following steps to avoid comparing landscape metrics derived from images 
which present different values of accuracy due to the choice of inadequate parameters during 
segmentation.

3.3. Computation of landscape metrics and sensitivity measurement
A total of 85 metrics (Table 1) were considered in the context of the research objective 

and   landscape  ecology  principles  (Turner  et  al.,  1989;  Forman,  1995;  McGarigal  and 
Cushman,  2002).  These  metrics  are  related  to  landscape  composition  or  landscape 
configuration and can be grouped into six major categories: 1) area/density/edge, 2) shape, 3) 
core area, 4) isolation/proximity, 5) contagion/interspersion and 6) diversity (McGarigal et al., 
2002). These metrics were computed for each of the classified images. In order to evaluate the 
sensitivity of each metric to the method of classification, the coefficient of variation of each 
metric were computed.

4. Results
4.1. Image classification and accuracy assessment

Nine segmentations were generated with similarity thresholds ranging from 19 to 59 in 
intervals of 5, and a constant area threshold of 22. The selection of the similarity parameter 
was based on visual checking of the segmentation results. With value 19, it appeared that the 
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image was over-segmented,  and with value 59 it  was under-segmented (Figure 3). So the 
tested similarity values were set between these two values. The area threshold set at 22 pixels 
was in accordance with recommendations  by Espindola et  al.  (2006) who used a Landsat 
image and found optimal segmentation results with this area threshold. The segmented images 
were classified along with the unsegmented original image (pixel-based classification).

Classification  accuracies  ranged  from 68.7  % to  75.5  %,  which  lies  in  the  range  of 
accuracy values of many maps obtained by remote sensing and submitted to rigorous accuracy 
assessment  (Zhu et  al.,  2000; Laba et  al.,  2002; Couturier et  al.,  2010). According to the 
McNemar’s test (with p = 0.05), the values of accuracy of the three pixel-based classified 
images and object-based classified images obtained with similarity of 24, 29, 34, 39, and 49 
are not significantly different. Therefore, the classified images with lower accuracy values 
were not considered further as the objective was to evaluate the variation of the landscape 
metrics derived from classified images with no significant difference in accuracy.

Figure 3. Segmentations with “similarity” threshold of 19, 39 and 59, and a constant “area” threshold  
of 22.

4.2. Metric calculation and measurement error
Table 1 shows the variation of metrics at the landscape and class level for some categories 

(for a complete table see Mas et al., 2010). For area/density/edge metrics, and at the landscape 
level, the more stable metrics (variation coefficient < 4%) were the largest patch index (LPI) 
and the mean radius of gyration (GYRATE). The largest patch is a temperate forest area that 
is  relatively  compact  and does not  suffer any important  change in the different  classified 
images (Figure 4). At the class level, LPI presents a very different behaviour depending on 
the  land cover  category.  It  is  stable  for  more  compact  categories  (forests,  grassland)  and 
presents important variations for more fragmented categories (in particular orchards). Gyrate 
(mean distance between each cell in the patch and the patch centroid) seems to be a quite 
stable  metric,  except  when  weighted  by  patch  size  for  categories  which  show important 
variations of patch areas among classified images.

Among shape metrics,  fractal  dimension (FRAC) and perimeter-area fractal  dimension 
(PAFRAC) show less variation because they use the logarithm of perimeter and area, which is 
different from the shape index (SHAPE) and the perimeter-area ratio (PARA). The contiguity 
index (CONTIG, average contiguity value for the cells in a patch), is also an index with low 
variations. At the class level, the sensitivity of these indices depends on the compactness of 
each category.

All core areas metrics exhibit important variations (coefficients of variation between 4% 
and 40% at the landscape level, reaching 61% at the class level for the orchard category).

In order to estimate isolation/proximity, the Euclidean nearest neighbour distance (ENN) 
is less sensitive to the classification approach than the proximity index (PROX) because it 
does  not  take  into  account  the  area  of  patches.  At  the  class  level,  this  last  index  has  a 
coefficient of variation higher than 80% for bare lands and irrigated agriculture.
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The contagion/interspersion indices based on adjacencies, such as the percentage of like 
adjacencies (PLADJ), and the aggregation index (AI) are less sensitive than those indices 
derived from the area of the patches, such as the effective mesh size (MESH) and the splitting 
index  (SPLIT).  At  class  level,  these  two  last  indices  have  a  large  amount  of  variation 
particularly for the category ‘orchards’ (with a coefficient  of variation of 75.2 and 33.6% 
respectively). The connectivity index patch cohesion index (COHESION), based on area and 
perimeter  of  the  patches,  has  less  variation  than  the  connectance  index  (CONNECT). 
CONNECT is derived from the number of functional joints between all the pairs of patches of 
the corresponding patch type within a distance specified by the user.

The diversity  index patch richness (PR) shows no variation  because all  the classified 
images have the same number of categories. Simpson’s Diversity Index (SIDI) is more stable 
because it is less sensitive to change in scarce categories than the Shannon’s Diversity Index 
(SHDI).

Generally, area-weighted means of metrics are not necessarily more stable than simple 
means  of  metrics,  because  the  differences  between the  classified  images  obtained  by the 
different approaches of classification and post-processing are not limited to small patches. In 
fact,  the  different  approaches  and  parameters  lead  to  the  elaboration  of  images  whose 
structure is different: from one image to another. Small patches can appear or disappear, but 
also larger patches can be connected or disconnected. Therefore, both large and small patches 
can  vary,  depending  on  the  classification  and  post-classification  procedures  applied.  As 
expected, the segmentations carried out with larger similarity values produced images with 
smaller patches, and the landscape shape was less complex. However the effects of sieving 
and clumping are more difficult to predict. 

Figure 4. Classified image obtained by pixel based maximum likelihood method followed by majority  
filtering, sieving and deletion of patches which size is below 22 pixels.
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Table 1. Coefficients of variation of landscape metrics at landscape and class level.

Index 
(Acronym) Full name Landscape

Bare 
lands Grasslands

Irrigated
Agriculture Orchards 

Temperate
Forest 

NP Number of parches 8.6 15.3 13.9 20.8 8.2 18.6
PLAND Percentage of landscape - 18.4 2.3 8.7 11.1 2.1
PD Patch density - 15.3 13.9 20.8 8.2 18.6
LPI Largest Patch Index 4.0 10.0 5.0 17.8 35.2 4.0
TE Total edge 8.6 20.7 8.4 15.8 6.0 6.7
ED edge density 20.7 8.4 15.8 6.0 6.7
LSI Lanscape shape index 8.5 13.1 7.9 13.3 4.4 7.5
AREA* Mean patch area 8.69/6.9 7.5 / 13.2 14.5/12.1 18.3/18.9 18.8/56.3 16.5/6.2
GYRATE* Mean radius of gyration 2.8/2.4 4.2/11.0 5.1/13.8 3.6/17.6 3.4/34.1 5.6/2.0
SHAPE* Mean shape index 4.8/4.9 5.8/12.3 3.8/13.5 7.6/13.6 3.3/19.0 6.1/6.4

FRAC*
Mean fractal dimension 
index 0.7/0.4 0.9/0.9 0.5/1.1 1.4/0.9 0.5/1.04 0.9/0.5

PARA* Mean perimeter-area ratio 3.5/8.4 2.7/8.7 3.9/7.5 8.5/11.8 3.5/6.9 4.5/8.4
CONTIG* Mean contiguity index 1.2/0.7 1.3/1.3 1.1/1.0 2.9/1.0 1.4/0.7 1.5/0.5

PAFRAC
Perimeter area fractal 
dimension 1.8 2.1 1.8 2.5 0.5/1.04 2.0

TCA Total core area 4.3

CPLAND
Core area percent of 
landscape - 17.6 9.0 13.4 20.6 5.6

NDCA
Number of disjunct core 
areas 6.0 17.8 8.9 6.1 6.2 13.5

CORE* Mean core area 12.7/9.5 12.9/10.4 21.0/15.6 18.9/20.3 29.7/61.5 19.7/8.8
DCORE* Mean disjunct core area 10.3/40.5 7.5/6.2 14.0/28.0 16.8/23.7 22.5/70.5 17.0/44.6
CAI* Mean core area index 7.9/4.4 8.6/7.1 15.6/9.2 27.0/7.2 9.3/8.7 7.9/3.9
PROX* Mean proximity index 13.3/27.6 12.3/153.9 16.1/32.6 38.4/84.0 33.3/34.6 7.5/28.6

ENN*
Mean Euclidian nearest 
neighbour distance 6.2/4.0 9.0/13.0 15.4/37.8 8.5/3.8 16.2/3.4 8.7/1.3

CLUMPY Clumpiness - 1.2 0.9 1.0 0.6 0.6
CONTAG Contagion 2.0

PLADJ
Proportion of like 
adjacencies 0.6 1.1 0.9 0.8 0.7 0.4

IJI
Interspersion / 
juxtaposition index 1.7 16.0 2.7 2.8 21.5 1.3

DIVISION Landscape division index 1.3 0.0 0.0 0.1 0.1 1.4
MESH Effective mesh size 6.8 32.6 10.7 23.6 75.2 7.9
SPLIT Spitting index 6.9 19.8 10.9 26.4 33.6 8.0
AI Aggregation index 0.6 1.1 0.9 0.8 0.6 0.4
CONNECT Conectance index 3.1 10.3 2.0 7.9 3.7 9.4
COHESIO
N Patch cohesion index 0.0 0.3 0.3 0.1 0.2 0.0
PR Patch richness 0.0

SHDI
Shannon´s Diversity 
Index 1.2

SIDI
Simpson´s Diversity 
Index 0.9

MSIDI
Modified Simpson´s 
Diversity Index 2.0

SHEI Shannon´s eveness index 1.2
SIEI Simpson´s eveness index 0.9

MSIEI
Modified Simpson´s 
eveness index 2.0

* Results  based  on metrics  computed  using simple  mean and area-weighted  mean (simple  mean/area-
weighted).
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5. Discussion and conclusion
Many studies have aimed to quantify landscape pattern and/or forest fragmentation over 

time  (Fitzsimmons,  2003;  Cayuela  et  al.,  2006;  Abdullah  and  Nakagoshi,  2007).  The 
variations in the values of the indices due to the classification approach that we found in this 
work are of the same magnitude as the variations due to land cover/use change found by Yung 
and Liu (2005). Consequently, the interpretation of the variation of landscape metrics of land 
use/cover maps of different dates obtained through the digital classification of images using 
1) different approaches (pixel-based or object-based) or 2) different parameters when carrying 
out the segmentation of the image or the filtering of a pixel-based classified image must be 
taken with caution. This is because artifacts can produce significant variations in the value of 
the metrics.

In studies  where  metrics  are  compared  between sub-regions  extracted  from the  same 
image, and therefore classified with the same method/parameters,  metrics which are more 
sensitive can be preferentially used. For multidate comparison, when classification methods 
are  distinct  for  the  different  dates,  or  when  other  factors  such  as  spatial  resolution  or 
vegetation  phenology  are  likely  to  play  a  role,  more  stable  metrics  should  be  preferred. 
However, metrics that are too stable, such as the patch richness, will not detect changes, and 
therefore a trade-off between robustness (stability) and sensitivity must be found. 

As shown in this study, variations in the value of landscape metrics can be the result of 
the approach used to analyze the images. Therefore,  caution must be exercised in making 
meaningful  comparisons  and  in  detecting  to  what  degree  variations  in  metrics  are  really 
related  to  significant  changes  in  the  landscape,  and  not  to  artefacts  derived  from 
methodological  problems  in  their  measurement.  Comparison  of  landscape  metrics  must 
therefore be made with explicit knowledge of their sensitivity as demonstrated here. In further 
studies,  a  similar  sensitivity  assessment  will  be applied to  landscape  evaluation  based on 
different  approaches  such  as  landscape  connectivity  (Saura  and  Torné,  2009;  Saura  and 
Rubio, 2010).
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