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Abstract: Self-organizing map (SOM) and geographic information system (GIS) models were used to 

investigate the nonlinear relationships associated with geochemical weathering processes at local (~100 km
2
) and 

regional (~50.000 km
2
) scales. The dataset consisted of 304 samples, 19 B-horizon soil variables (P, C, pH, Al, 

total acidity, Ca, Mg, K, total cation exchange capacity, sum of exchangeable bases, base saturation, Cu, Zn, Fe, 

B, S, Mn, radiometrics and magnetic susceptibility measures) and 6 topographic variables (elevation, slope, 

aspect, hydrological accumulated flux, horizontal curvature and vertical curvature) characterized at 304 locations 

from a quasi-regular grid spaced about 24 km across the state of Paraná. The self-organizing maps were used to 

identify and classify the relationships among solid-phase chemical element concentrations and GIS derived 

topographic models. The proposed method proved suitable to survey soil chemical and physical properties, 

revealing and quantifying relationships between soil variables and terrain morphometry, not properly observed 

by linear multivariate statistical approaches, where no statistical assumptions concerning the sampling dataset is 

required.  
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1. INTRODUCTION 

 

Terrain morphometric features reflect physical and chemical processes responsible for 

their development. The proper reasoning of the weathering process helps understanding, at 

least partially, those phenomena that influence landscape formation. Chemical and physical 

weathering is a coupled process and a significant factor for hillslope shapening, since the 

mobility of chemical elements is strongly connected with the soil physical-chemical 

conditions, such as pH, moisture, temperature and porosity (Young, 1980). For example, 

concave areas on hillslopes are frequently associated with convergent hydrological fluxes, 

higher soil moisture and reducing environment, whereas convex areas, frequently associated 

with hilltops, are characterized by divergent hydrological fluxes, oxidizing environment and it 

is more susceptible to physical erosion (Heimsath et al., 1997). 

Early numerical modeling and empirical approaches allowed the quantification of soil 

mass loss from a physical viewpoint. Such models considered hillslopes uniform along their 

extensions, i.e., rectilinear, not reflecting the heterogeneity of sediment transport and 

deposition rate. Most recent models for soil mass loss assume a nonlinear sediment transport 

rate; they consider that hillslopes, usually, have convex morphometry near hilltop, rectilinear 

at the middle section and concave at the base (Roering et al., 1999). Morphometric properties 

could be incorporated into the soil weathering modeling and applied to larger areas using 

digital elevation models and Geographical Information Systems (GIS) to calculate measures 

like, slope, aspect, horizontal curvature, vertical curvature and hydrological accumulated flux.  

Empirical approaches to analyze soil geochemical data are usually based on statistical 

multivariate methods, such as multiple linear regression, cluster analysis and factor analysis. 
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These are robust and reliable methods, though with strong assumptions like normal 

distributed residuals, stationarity, and non co-linearity between the explanatory variables, 

where among these methods, multivariate linear regression, one of the most well established 

approach, penalize a high number of explanatory variables, seeking a balance between the 

number of variables and the information explained by the model. (Netter et al, 1996). An 

additional intricacy is the fact that according to Reimann and Filzmore (1999), geochemical 

data, at regional scale, do not show normal, neither lognormal distribution.  

An alternative to analyze multivariate datasets are data mining techniques. Self-

Organizing Maps (SOM) Kohonen (2001) are suitable to deal with noisy, non stationary and 

non Gaussian data. This method highlights nonlinear relationships by topological 

transformations of the original dataset. The absence of prior assumptions are one of the main 

advantages of data mining approaches, since traditional multivariate statistics, generally, 

assume linear relationship between the independent and dependent variables.  

The self-organizing map (SOM) technique has been used in related studies to explore 

relations among rock geochemistry and hyper-spectral images (Penn, 2005), classify 

geomorphometric aspect based on digital elevation models (Ehsani and Quiel, 2008), 

characterize hillslope landslide vulnerability (Hentati et al., 2010), identify processes 

controlling the distribution of iron in soil and sediment (Löhr et al., 2010), and investigate the 

geochemistry in shallow groundwater (Friedel et al., in review). The aim of this study is to 

analyze nonlinear relations among published B-horizon soil geochemical, environmental, 

relief morphometry, and GIS data from 304 locations using the SOM (Kohonen, 2001) 

component planes visualization (Penn, 2005) and k-means clustering techniques. 

 

1.1. Study area 

 

Paraná is a state of Brazil, located in the South of the country. The predominant climate is 

characterized as subtropical with warm summers and cold winters. According to the Köppen 

classification, the subtropical climate has three variants: Cfa, Cfb and Af. The annual average 

temperature varies from 14°C to 22°C with a slightly colder climate occurring along the 

southern plateau. The annual average precipitation ranges from 1.500 mm to 2.500 mm.  

The geological record of Paraná is characterized by rocks with ages greater than 2.800 

million years before present (Minerais do Paraná – MINEROPAR, 1986). The shield, 

composed of magmatic and metamorphic rocks older than 570 million years, is covered by 

Paleozoic and Mesozoic volcanic and sedimentary rocks comprising the Paraná basin (Figure 

1). This coverage was eroded due to uplift of the continental crust, east of the basin, exposing 

the basement. More recent sediments (less than 1.8 million years) partially overlay the basin 

and shield rocks. The crystalline basement, formed by igneous and metamorphic rocks with 

ages varying from Achaean to Proterozoic, is locally covered by volcano-sedimentary, 

sedimentary and unconsolidated sediments sequences. The crystalline shield encompasses a 

mega-belt formed on late Pre-Cambrian by the collision of continental and micro-continental 

blocks. The basin includes a second and third plateau that covers most of the state. It is a 

sedimentary basin, overlain by Cretaceous basalt, intracratonic, evolved over the South 

American platform and its generation began during the Devonian period (approximately 400 

million years ago) and ended in the Cretaceous period.  
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Figure 1. Simplified geological map of Paraná state (modified from Lich, 2001). 

 

2. METHODS 

 

Five steps were used to identify hillslope weathering relations linking the soil 

geochemistry to relief morphometric features. First, all data variables were standardized so 

that no one variable would dominate in the nonlinear modeling process (Kalteth et al., 2008). 

The z-score transformation is given by: 

 
i

ii
i

s

xx
z

−
=        (1) 

Where z is the standardized value; x is the raw score;   is the sample average, and s is the 

sample standard deviation, i is an index for each variable. Standardizing variables in this way 

resulted in each having an expected value of zero and standard deviation one. Second, after 

the standardization data were split into two subsets: training (n = 274) and validation (n = 30). 

Third, the SOM (Kohonen, 2001) was used to self organize nonlinear relations among the 25 

variables. Fourth, the k-means clustering technique (Vesanto et al., 2000) was used to classify 

the SOM topography into statistically relevant conceptual models (Ehsani and Quiel, 2008). 

Finally, the geochemical concentrations were interpreted based on terrain morphometry and 

associated clusters. 

To effectively capture random spatial variability of geochemical and hydrological 

processes, field sampling of B-horizon soil samples was conducted using a quasi-regular grid 

across Paraná. The Paraná Agronomic Institute performed analyses of the following variables: 

pH, Alexchangeable (mg/kg), Caabsorbable (cmolc/kg), Mgabsorbable (cmolc/kg), Pabsorbable (cmolc/kg), 

Kabsorbable (cmolc/kg), Corganic (g/kg), H
+
+Al

3+
, Cuextractable (mg/kg), Znextractable (mg/kg), 

Feextractable (mg/kg), Mnextractable (mg/kg), Sextractable (mg/kg), Bextractable (mg/kg), V% (base 

saturation), CEC (cations exchangeable capacity), Sum (sum of exchangeable bases), gama-

spectrometry (channels total count, Uranium, Potassium and Thorium), and magnetic 

susceptibility (dimensionless). These data were assembled into a data base by the Paraná State 

Geological Survey and provided to project personnel (Licht, 2001). 

Characterization of the topographic relief was possible using elevation data provided by 

the Shuttle Radar Topographic Mission (Farr and Kobrick, 2000). The digital elevation model 

associated with these data was provided by the United States Geological Survey on a lattice 

with 90-m spatial resolution. The Topodata project, conducted by the Brazilian National 
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Institute for Space Research-INPE (Valeriano et al., 2009), has created derived metrics data 

with a 30-m resolution, based on elevation data and a geographical information system (GIS) 

modeling techniques. The geomorphometric features provided a way to extract morphometric 

features, such as slope, aspect (hillslope orientation), vertical and horizontal curvature 

(Valeriano et al., 2006), and accumulated hydrological flux (Jenson and Domingue, 1988).  

The variable slope represents the first derivative of two locations on the elevation data, 

while the second derivative produces the variable aspect, which indicates the position of the 

hillslope relative to the north. Another derived measure, the vertical curvature depicts the 

hillslope profile: convex, rectilinear, and concave shape, whereas the horizontal curvature is 

the hillslope shape when represented on the horizontal plane, describing a divergent, planar or 

convergent hydrological flux. The last modeled variable, hydrological accumulated flux is a 

measure of the number of terrain units that converge at the element being analyzed. It is used 

as a proxy for the distance from the ridge. 

 

2. 3. Self Organizing Maps  

 

Self Organizing Maps (SOM) belongs to a category of Artificial Neural Networks (ANN) 

called competitive learning networks. These are computational models structured as a proxy 

for the neuron links that constitutes the human brain. The term ‘self-organizing’ comes from 

the unsupervised nature of the algorithm, having the ability to organize, or classify, the 

information without any specifications about the output pattern. The output maps are 

consisted in neurons organized on a regular two dimensional grid, usually represented as cells 

on hexagonal or rectangular lattice. Each neuron in the map is represented by a multi-

dimensional weight vector m=[m1, m2, …, md], where d correspond to the dimension of the 

input vectors. Each neuron is connected to the adjacent neuron by a neighborhood relation, 

which defines the topology, or structure of the map (Vesanto et al., 2000). 

Each sample is associated to a vector with properties that reflect its contributions relative 

to the other variables (Figure 2). From this ‘cloud’ of vectors the Best Matching Unit (BMU) 

is iteratively determined for each variable, by 
i

i
c mxmx −=− min

,
where o   is the 

Euclidian distance, x is the input vector, m is the weight vector and c is the neuron whose 

vector is nearest to the input vector x. Then the neurons within a specified neighborhood are 

updated by, )]()()[()()()1( tmtxthttmtm iciii −+=+ α , where t is the time step; mi(t)  is the 

current weight vector, α(t) is the adaptation coefficient, and hci(t) is the neighborhood kernel 

centered on the winning neuron c. The topology of the vectors is altered until convergence 

conditions are reached (Kohonen, 2001; Vessanto et al, 2000). 

 The resulting maps are organized in such way that similar data are mapped into the 

same node or into neighborhood nodes, i.e., it is a data classification based on their topology 

in the n-dimensional space (Figure 2). The U-matrix is compose by the BMUs, obtained from 

the weight vectors associated to the input vectors, thus, each variable produces a weight map, 

or component map, arranged in a grid that coincides to the U-matrix. These maps can be used 

to visualize the correlations, once the cells with similar colors and positions inside the map 

describe similar contributions for the construction of the U-matrix. 
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Figure 2. Each sample describes a vector in n-dimensional space (left picture). The white 

vector represents the best matching unit, these vector are initialized by a random seed 

vector which interactively change its position to produce the final representing node. 

Similar samples are gathered in the same node projected on a 2 dimensional map (right 

picture) where the colors represent dissimilarity values. Blue colors match up with low 

values, while reddish tones correspond to high values of dissimilarity (Fraser and 

Dickson, 2005). 

 

Once component maps and the U-matrix are produced, the K-means clustering method 

was employed to classify the cells as a post-processing analysis. The method finds a vector of 

means from a specific group of cells so as to minimize the within-cluster sum of variances. 

The algorithm is deemed when convergence for a local minimum variance is reached and the 

assignments no longer change. 

 

3. RESULTS AND DISCUSSIONS 

 

Inspection of the component maps (Figure 4) revealed several soil geochemistry relations. 

For example, the elements B, Ca, Mg, K, Cu, P and Zn are strongly correlated, where Cu and 

Zn are linked to the presence of mafic rocks from the second and third plateau, while K, Mg 

and Ca, are associated with aluminosillicates rocks, as the basalt from Serra Geral Formation 

(Licht, 2001). In contrast, inverse relations exist between pH, base saturation and Al (blue 

boxes on Figure 4), and Fe and aspect (green boxes on Figure 4). The Al content is directly 

linked to the total acidity in the soil, so a high concentration of Al implies a low value of pH. 

Regarding Fe, the inverse correlation with respect to aspect may be due to the type of iron 

present. Specifically, a hillslope facing north (value of one) is more exposed to the sun and 

therefore subject to oxidizing conditions; oxidized Fe is less mobile than reduced the reduced 

form .  

Cations exchangeable capacity (CEC) is a measure of allowance for solid particles to 

exchange positively charged ions with soil solution, constituting an approach to quantify soil 

fertility, i.e., the soil capacity to retain nutrients. From a hydrological point of view, this is an 

important parameter to characterize subsurface chemical weathering, since it is related to the 

capacity for adsorption of elements. Figure 5 shows the scatterplots for soil geochemistry 

variables (CEC and organic carbon) and measurements that can be obtained by remote 

sensors (gamma-spectrometry, elevation and slope). These ‘samples’ are actually the nodes 

stemmed from the SOM classification. Each node is associated to one or more samples 

according to a topological similarity. The colors represent different clusters, calculated using 

k-means technique.  

 

Anais XV Simpósio Brasileiro de Sensoriamento Remoto - SBSR, Curitiba, PR, Brasil, 30 de abril a 05 de maio de 2011, INPE  p.5733

5733



 
Figure 4. Component planes used to visualize nonlinear correlation. For example, 

the elements highlighted by boxes in similar colors, C, cations exchangeable 

capacity and K are correlated (similar colors), whereas pH and base saturation is 

inversely correlated with aluminum and iron is inversely correlated with aspect 

(opposite colors).  

 

  
 

  
Figure 5. Scatterplots expressed as z-scores of the variables organic carbon, potassium 

(gamma-scpectrometry), cations exchange capacity, slope and elevation.  
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The graphs can be interpreted considering the general dispersion of each element, and the 

pattern of each cluster individually. The CEC is associated with electronegative charges from 

clay mineral, colloidal silica and humus content, here expressed by organic carbon. There is a 

degree of interactivity among the variables. A strong correlation between organic carbon and 

CEC is observed, whereas the CEC is correlated with the potassium content yielded from the 

gamma-spectrometry data. The correspondence between soil variables and relief features can 

be explained by the solubility of elements, which is associated with subsurface hydrology and 

weathering. More soluble elements present higher susceptibility to be transported and should 

show a sharper relation with the hydrological path on subsurface. 

 

4. CONCLUSIONS 

 

Using a type of unsupervised artificial neural network, called the self-organizing map 

(SOM), multidimensional soil geochemical and geophysical variables can be projected onto a 

2-dimensional surface while preserving important nonlinear relations. Chemical weathering is 

an important factor for development of the terrain morphology in the state of Paraná. 

Chemical element concentrations depend on the hillslope morphology that constitutes a two-

way process: hillslope profiles influence the weathering, and weathering influences hillslope 

morphology. The soil chemical composition is a result of a large number of factors including 

the bedrock-to-soil conversion rate, soil erosion (mass transport), and solute transport. The 

SOM and k-means methods made it possible to understand the nonlinear relationships 

associated with a large number of variables. This two-step approach can be used to 

understand hillslope chemical weathering, erosion, and landscape evolution in other locations 

and environmental settings. 

The proposed method is suitable to survey soil chemical and physical properties, 

revealing and quantifying relationships between soil variables and terrain morphometry, not 

properly observed by linear multivariate statistical approaches, where no statistical 

assumptions concerning the sampling dataset is required 
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