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Abstract. In this paper we would like to shed light over the problem of efficiency and effectiveness of image 

classification in large datasets. As the amount of data to be processed and further classified has increased in the 

last years, there is a need for faster and more precise pattern recognition algorithms in order to perform online 

and offline training and classification procedures. We deal here with the problem of land use classification in 

middle resolution satellite images in a fast manner. Experimental results using Optimum-Path Forest and its 

training set pruning algorithm are also provided and discussed. 
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1. Introduction 

 

 Automatic classification in large collection of images has been a challenge in the last 

years. The exponential growing of embedded technologies in digital cameras and satellite 

onboard systems has introduced a new concept in the image classification research field: can 

we ally efficiency and effectiveness in object recognition?  

A common non-professional digital camera may produce images with millions of 

pixels to be classified, leading us to face a new paradigm that involves classification in 

massive datasets. Several techniques have been developed in order to overcome such 

problem, such as LASVM (Bordes et al., 2005), SVMTorch (Collobert and Bengio, 2001), 

LibLINEAR (Fan et al., 2008), and LibOPF (Papa et al., 2009a). The former approaches were 

designed to adapt the well succeed Support Vector Machines (SVMs) for large datasets, and 

the latter technique, Optimum-Path Forest (OPF) was proposed aiming to provide graph-

based pattern recognition algorithms with reduced training time (Papa et al., 2009b). 

Although OPF has demonstrated to be similar to SVMs regarding accuracy, it 

performs training much faster (Papa et al., 2009b). Moreover, it is often desirable to handle 

the pattern classification as fast as possible. Imagine a situation in which we have an 

interactive remote sensing image classification system. The user may want to mark some 

samples, which will be used to train a classifier. The remaining pixels will be classified 
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according to the classifier designed over the training samples. After that, the user may refine 

the results marking another set of samples, and even so unmarking misclassified ones. This 

process can be repeated over several iterations until the user be satisfied. Note that it is 

desirable to have a fast training and classification processes in order to provide a user-friendly 

framework, mainly in applications that tackle high resolution and multispectral images. 

Aiming to speed up the OPF classification time, Papa et al. (2009c) proposed a 

learning algorithm to identify the irrelevant samples of the training set, i.e., the ones that did 

not participate from any classification process, for further remove them. This training set 

pruning algorithm was first validated in the context of rainfall occurrence estimation in 

satellite images, and has demonstrated to be very efficient with less affecting the accuracy 

over the test set in some applications. In that approach, when a sample from the evaluating set 

is classified, all training nodes responsible for that classification are marked. At the final of 

the process, the unmarked samples are then removed from the training set and discarded. 

In such a way, we would like to shed light here the importance of having efficient and 

effectiveness classifiers, which will bound the amount of information that can be handled in a 

nearby future. In this paper we evaluated how much we can penalize the OPF classifier 

effectiveness by increasing its efficiency. The remainder of this paper is organized as follows. 

Section 2 presents OPF and its training set pruning algorithm. Section 3 discusses the 

experimental results, and Section 4 states conclusions.  

 

2. Optimum-Path Forest 

 

Given a training set with samples from distinct classes, we wish to design a pattern 

classifier which can assign the true class label to any new sample. Each sample is represented 

by a set of features and a distance function measures their dissimilarity in the feature space. 

The training samples are then interpreted as the nodes of a graph, whose arcs are defined by a 

given adjacency relation and weighted by the distance function. It is expected that samples 

from a same class/cluster are connected by a path of nearby samples. Therefore, the degree of 

connectedness for any given path is measured by a connectivity (path-value) function, which 

exploits the distances along the path. In supervised learning, the true label of the training 

samples is known and so it is exploited to identify key samples (prototypes) in each class. 

Optimum paths are computed from the prototypes to each training sample, such that each 

prototype becomes root of an optimum-path tree composed by its most strongly connected 

samples. The labels of these samples are assumed to be the same of their root. In unsupervised 

learning, each cluster is represented by an optimum-path tree rooted at a single prototype but 

we do not know the class label of the training samples. Therefore, we expect that each cluster 

contains only samples of a same class and some other information about the application is 

needed to complete classification. The basic idea is then to specify an adjacency relation and a 

path-value function, compute prototypes and reduce the problem into an optimum-path forest 

computation in the underlying graph. The training forest becomes a classifier which can 

assign to any new sample the label of its most strongly connected root. 

Papa et al. (2009b) presented a first method for supervised classification using a 

complete graph (implicit representation) and the maximum arc weight along a path as 

connectivity function. The prototypes were chosen as samples that share an arc between 

distinct classes in a minimum spanning tree of the training set. This OPF classifier has been 

widely used in several applications. Another supervised learning method was proposed by 

Papa and Falcão (Papa and Falcão, 2008). In this case, the arcs connect k-nearest neighbors 

(k-nn) in the feature space. The distances between adjacent nodes are used to estimate a 

probability density value of each node and optimum paths are computed from the maxima of 

this probability density function. For large datasets, we usually use a smaller training set and a 
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much larger evaluation set to learn the most representative samples from the classification 

errors in the evaluation set. This considerably improves classification accuracy of new 

samples. This strategy was assessed with k-nn graphs by (Papa and Falcão, 2009). The 

accuracy results can be better than using similar strategy with complete graph for some 

situations, but the latter is still preferred because it is faster and does not require the 

optimization of the parameter k.  

Although OPF be faster than SVM for training, it is often desirable to design 

classifiers that can handle online training in massive datasets. Hence, any effort devoted to 

such applications will be always welcome. Papa et al. (2009c) proposed an algorithm that 

prunes the training set by identifying irrelevant samples in a learning process and further 

removing them. This approach has demonstrated to be very efficient and effective in some 

applications, speeding up the OPF training and classification times. Section 2.1 presents the 

OPF pruning algorithm. 

 

2.1 Pruning training samples 

 

Large datasets usually present redundancy, so at least in theory it should be possible to 

estimate a reduced training set (Z1) with the most relevant patterns for classification. The use 

of training and an evaluation set has allowed OPF to learn relevant samples for training set 

from the classification errors in the evaluating one, by swapping misclassified samples of Z2 

and non-prototype samples of Z1 during a few iterations (Papa et al., 2009b). In this learning 

strategy, Z1 remains with the same size and the classifier instance with the highest accuracy is 

selected to be tested in the unseen set Z3.  

Further, Papa et al. (2009c) proposed an algorithm that aimed to identify the most 

relevant samples from Z1 by classifying Z2 and marking each sample from the training set 

until its root in the optimum-path tree that classified some node from Z2. This process is 

repeated until some convergence criterion is satisfied, and at the final the unmarked samples 

are removed from the training set. Therefore, this approach aims to learn the relevant samples 

from the training set and also to reduce its size. As the OPF computational complexity is 

proportional to the number of training samples, we can speed up it by decreasing the training 

set size. Obviously, the accuracy over the test set may be affected, but in some applications 

this phenomenon has not been observed (Papa et al., 2009c).  

The OPF pruning algorithm can be summarized in Figure 1a-d. Figure 1a shows an 

optimum-path forest generated in the training phase, composed by two optimum-path trees (a 

blue and a red one) and two prototypes (bounded nodes). In Figure 1b, one can see the 

classification process from a sample p (yellow node) of the evaluating set: p is connected to 

all nodes of Z1, and it is evaluated the node t from Z1 that offered the optimum-path in Figure 

1c. For sake of simplicity, some arcs were not represented in Figure 1b. Finally, in Figure 1d 

all training nodes that participate from the classification process of p are marked with the 

black color. At the final of the whole classification step, the unmarked training samples are 

discarded from the training set. 

The pruning process is repeated until some criterion is satisfied. The user may define a 

number of iterations, or even so can set a lower bound to the absolute difference between the 

accuracy over the original evaluating set and the pruned one (this threshold is called MLoss). 

In this case, when this absolute difference is reached, the algorithm stops its execution. We 

use this implementation for the experiments in this paper. This is the first time that OPF 

pruning algorithm is used to assess its robustness regarding different training set sizes in the 

context of land use classification.  

Although the reader may argue that the pruning step complexity can be increased with 

respect to simple training, this procedure can be used once, or only when it is required by 
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user. If the resolution of the images to be classified increase, the pruning algorithm may be 

applied in order to reduce the training set size again. Note that is expected a lower bound to 

the training set size, and the user needs take into account this point when it adjusts the 

parameters of pruning algorithm, aiming the best trade-off between good recognition rates in 

the classification set and speed for training patterns.   

 

 

 
(a) 

 

(b) 

  
(c) 

 

(d) 

Figure 1. OPF training set pruning algorithm proposed by Papa et. Al (2009c): (a) optimum-

path forest generated over Z1, (b) classification of a sample p from Z2, (c) p is conquered by t 

and receives the red label, (d) all nodes from the optimum-path used to conquer p are marked 

with the black label. 

 

 

3. Experiments 

   

We conducted the experiments in two phases: in the former we evaluated the 

Optimum-Path Forest accuracy over two images covering the area of Distrito do Lobo, 

Itatinga – SP, obtained from CBERS-2B and Landsat 5 satellites, and in the former we 

evaluated the pruning algorithm in order to speed up classification phase. Figure 2 shows the 

CBERS-2B and Landsat 5 images used in this work.  

In the first round of experiments (Section 3.1) we used 70% of the image for training 

and the whole one for testing. In this case, we applied this procedure for CBERS-2B (Figure 

2a) and Landsat 5 (Figure 2b) images. In the second round we used 70% for training, 10% for 

the evaluating set and the whole image for testing. The training and evaluating set are used to 

the learning process involved in the pruning algorithm (Section 3.2). 
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Figure 2. Satellite images used in the experiments covering the area of Distrito do Lobo, 

Itatinga – SP, Itapetininga-SP: (a) CBERS-2B CCD (B2G3R4 composition) and (b) Landsat 5 

TM (B5G3R4 composition). 

 

3.1 Land use classification through Optimum-Path Forest 

 

 In this section, we evaluate the accuracy of OPF considering the land use classification 

task. Since that Pisani et al. (2009) already demonstrated that OPF outperformed Support Vector 

Machines and Artificial Neural Networks with Multilayer Perceptrons to this task, we opted to not 

show here these experiments. To compose the feature vector for the pixel-based classification, we 

used 21 features described as follows:  

 3 color features composed by the gray levels in the Red, Green and Blue channels. 

 18 texture features obtained through the convolution between the original image and a  

Gabor filter in 6 different orientations (   0°, 45°, 90°, 135°, 225° and 315°) and 3 

spatial resolutions (   2.5, 3 and 3.5). For each one of the   values, we applied a 

different value for  , say that    1.96, 1.40 and 1.68. 

 

Equation 1 below describes the mathematical formulation of the Gabor filter applied in 

this paper:  

                  
 
         

          
  

 
   , 

 

 

(1) 

where                    e                     In the above equation,   means 

the sinusoidal factor,   represents the orientation angle,   is the phase offset,   is the 

Gaussian variance and   is the aspect spatial ratio. Regarding the remaining variables, we 

used the following values:     and    . Tables 1 and 2 display the kappa results for 

different training set size percentages for CBERS-2B and Landsat 5 satellites, respectively. 

The training and classification times in seconds are also shown. 

 

Table 1. Quantitative results for OPF classification in the CBERS-2B image (Figure 2a). 
Training set percentage Kappa Training time [s] Classification time [s] 

30% 0.71 539.95 1680.77 

40% 0.75 960.55 2301.72 

50% 0.79 1525.25 2832.67 

60% 0.83 2204.03 3303.75 

70% 0.87 3005.87 3695.98 
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Table 2. Quantitative results for OPF classification in the Landsat image (Figure 2b). 
Training set percentage Kappa Training time [s] Classification time [s] 

30% 0.77 561.73 1882.24 

40% 0.81 1009.91 2611.51 

50% 0.84 1586.87 3004.15 

60% 0.87 2291.99 3537.68 

70% 0.90 3123.68 4015.71 

 

We can see that OPF can get good results, which are also displayed by the classified 

images in Figure 3. The ground truth images with respect to the ones displayed in Figure 2 

were also shown. Note that land use classification is not a usual task, mainly because of the 

proximity of pixels from distinct classes, which share similar properties with different 

meaning. In the ground truth images (Figures 3b and 3d) there are six gray levels, which 

denote the following classes: cultures, dams, reforesting, grasslands, bushes and road. 

 

  
(a) 

 

(b) 

  
(c) (d) 

Figure 3. Satellite images used in the experiments: (a) and (c) are the ground truth and 

classified images obtained by CBERS-2B, respectively, and (b) and (d) are the ground truth 

and classified images obtained by Landsat, respectively.  
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3.2 Pruning samples from training set 

 

 In this section we evaluate how much the images are affected after a training set size 

reduction. As aforementioned, we used 70% for training, 10% for the evaluating set and the whole 

image for testing. Table 3 displays the results. 

 

Table 3. Quantitative results for OPF pruning. 
Satellite Kappa Classification time [s] Pruning rate 

CBERS-2B 0.59 260.92 94.24% 

Landsat 5 0.78 337.49 92.90% 

 

 As one can see, although the performance of OPF was quite degraded, mainly in CBERS-

2B case, the classification time was speeded up about 14.16 and 11.89 times for CBERS-2B and 

Landsat 5, respectively. However, we believe that we can make the accuracy much better 

adopting other values of the threshold for pruning, since that here we used           . This 

parameter is used as the convergence criteria, as explained in Section 2.1. Let      be the OPF 

accuracy over the evaluating set after training in the original training set, i.e., without pruning. Let 

     be the OPF accuracy over the evaluating set after training in the actual pruned training set. 

Hence,       can be defined as                   . This means that the pruning 

algorithm will stop only when           . Therefore, our future works will be dedicated to 

find other values of       that may less degrade the accuracy after pruning 

 

4. Conclusions 

   

In this paper we shed light the importance of having efficiency and effectiveness in 

image classification tasks, mainly in applications that require millions of pixels to be 

recognized. This problem has been found in interactive systems of image segmentation and 

classification, in which user-friendly environment are often desired. 

We conducted two rounds of experiments: in the first one we deal with the problem of 

land-use classification in images acquired by CBERS-2B CCD and Landsat 5 TM sensors. 

The experiments showed good recognition rates, which leaded us to classified images with 

interesting visual results. In the former round, we demonstrated that we can speed up the 

classification time, but the accuracy may be degraded up to a certain level, mainly because of 

some training samples pruning. In this case, we have obtained up to 95% of training set 

reduction. However, this pruning strategy may be hard in the sense of pruning all samples of 

the optimum-path that originated in a given sample that did not participate of the 

classification process over the evaluating set. Nowadays, we are looking to develop soft 

strategies for pruning, which may less affect the accuracy, but may be also slightly slower 

than the implementation used here, but still faster than not using pruning. 
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