MAPEAMENTO E CALCULO DE AREA DOS AREAIS (SW DO RS)
ATRAVES DE IMAGENS LANDSAT TM 5 -
PARA FINS DE MONITORAMENTO.

DIRCE M. A. SUERTEGARAY
LAURINDO ANTONIO GUASSELLI
GLAUCO MARTINS

UFRGS - CENTRO ESTADUAL DE PESQUISAS EM
SENSORIZAMENTO REMOTO E METEOROLOGIA
AV. BENTO GONÇALVES 9500, CAMPUS DO VALE, CX 15044
91501-970, PORTO ALEGRE RS, BRASIL.

RESUMO: Este trabalho descreve a metodologia utilizada para o mapeamento e classificação dos areais do SW do RS-Brasil. Para este fim foi utilizado nesta metodologia a banda 5 da faixa espectral do Landsat TM 5.
1 - INTRODUÇÃO

1.1 - OBJETIVO

O objetivo deste trabalho é o mapeamento e o cálculo de área para fins de atualização e posterior monitoramento do área do SW do RS; o cálculo da área desses áreais elaborado a partir de imagens Landsat Tm 5.

Para fins de ilustração cumpre dizer num primeiro momento que os estudos de "desertificação" do RS datam da década de 70. Desde os primeiros trabalhos a preocupação foi sempre no sentido de identificar, localizar, mapear e determinar a extensão dessas áreas. O instrumento utilizado foi via de regra o uso de sensores, inicialmente fotografias aéreas, posteriormente as imagens fotográficas, mais recentemente análise digital. Os primeiros trabalhos relativos a identificação e delimitação dos áreais, utilizaram particularmente fotos aéreas e imagens ERTS e levantaram algumas áreas existentes. Serve de exemplo o trabalho de Möller et alli (1975). Para avaliar esta distribuição o autor utilizou imagens de satélite (ERTS), escala de 1:1.000.000 e 1:500.000, além de cartas do Serviço Geográfico do Exército (SGE) na escala de 1:50.000.

A tabela 1 apresenta em detalhe a extensão dos areais identificados por Möller et alli, nas folhas do SGE. Conforme pode-se observar, em apenas dois municípios foram registradas ocorrências de areais: Alegrete e Quaraí, destes as áreas mais expressivas encontram-se no município de Alegrete.

<table>
<thead>
<tr>
<th>FOLHA SGE</th>
<th>ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerro da Cacimba (Quaraí)</td>
<td>182,5</td>
</tr>
<tr>
<td>Vila Manuel Viana (Julio Lopes - Alegrete)</td>
<td>182,5</td>
</tr>
<tr>
<td>Vila Manuel Viana (Estancia Bela Vista - Alegrete)</td>
<td>155,0</td>
</tr>
<tr>
<td>Lagoa Parova (Costa Leite - Alegrete)</td>
<td>82,5</td>
</tr>
<tr>
<td>Passo Novo (Lageado Grande - Alegrete)</td>
<td>37,0</td>
</tr>
<tr>
<td>Vila Manuel Viana (Sanga da Divisa - Alegrete)</td>
<td>27,0</td>
</tr>
<tr>
<td>Vila Manuel Viana (Alegrete)</td>
<td>17,5</td>
</tr>
<tr>
<td>Total</td>
<td>721,5</td>
</tr>
</tbody>
</table>

Fonte: Möller et alli (1978)

<table>
<thead>
<tr>
<th>Tabela 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribuição e Extensão dos Áreais no Sudoeste do RS Segundo Möller (1978).</td>
</tr>
</tbody>
</table>

324
Em "A erosão dos solos arenosos na Região Sul do Rio Grande do Sul", Cordeiro e Soares identificaram areais nos municípios de: Alegrete - areal São João (aproximadamente 200 ha), areal Km 15, areal Km 21 (direção Manuel Viana), areal Júlio Lopes (52,5 ha) e areal Passo Novo (aproximadamente 7,5 ha); São Francisco de Assis - areal Quatro Esmas; Cacequi - areal Fazenda Valdemar Rodrigues e Quarai - areal Catí ou Morro da Figueira". (Suertegaray 1982).

Suertegaray (1987) levantou as áreas de areais do Sudoeste do estado do Rio Grande do Sul através de imagens do satélite Landsat TM 5, na escala de 1:500.000 e cartas topográficas do SGE, na escala de 1:50.000. "Identificadas as manchas arenosas e mapeada sua distribuição, foi feito o cálculo de cada área de cada uma delas, conforme tabela 2. A análise desta tabela permite que se verifique um total de 1.568,19 ha de áreas arenosas, distribuídas ao longo da Região Sudoeste do estado. A maior concentração dessas manchas, tanto em número quanto em extensão, ocorre no município de Alegrete, com um total de 513,50 ha de áreas arenosas. São Francisco de Assis possui um total de 431,25 ha e Itaqui 345,80 ha de areais. Seguem a esses municípios os de Quarai, com 221,30 ha de areais, e Cacequi, com 56,25 ha.

<table>
<thead>
<tr>
<th>Municipios e localidades</th>
<th>ha</th>
<th>Municipios e localidades</th>
<th>ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alegrete</td>
<td></td>
<td>Sao Francisco de Assis</td>
<td></td>
</tr>
<tr>
<td>Lajeado Grande</td>
<td></td>
<td>Arroio Miracatu</td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>131,25</td>
<td>Area 1</td>
<td>143,75</td>
</tr>
<tr>
<td>Area 2</td>
<td>27,12</td>
<td>Area 2</td>
<td>118,75</td>
</tr>
<tr>
<td>Arroio Sao Joao</td>
<td></td>
<td>Arroio Pirajú</td>
<td></td>
</tr>
<tr>
<td>Area 1</td>
<td>178,00</td>
<td>Area 1</td>
<td>48,75</td>
</tr>
<tr>
<td>Area 2</td>
<td>91,25</td>
<td>Area 2</td>
<td>91,25</td>
</tr>
<tr>
<td>Area 3</td>
<td>27,12</td>
<td>Itaqui</td>
<td></td>
</tr>
<tr>
<td>Area 4</td>
<td>88,25</td>
<td>Arroio Puita</td>
<td></td>
</tr>
<tr>
<td>Arroio Jacacua</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area 1</td>
<td>90,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. Jacare e A. Mato Alto</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area 1</td>
<td>50,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sao Francisco de Assis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baixo Jaguarí</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area 1</td>
<td>49,75</td>
<td>Divisor entre Areal e Catí</td>
<td></td>
</tr>
<tr>
<td>Area 2</td>
<td>25,00</td>
<td>Area 1</td>
<td>450,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Area 2</td>
<td>97,50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Area 3</td>
<td>89,88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cacequi</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arroio Salica</td>
<td>56,25</td>
</tr>
</tbody>
</table>

Total: 1.568,19

Fonte: Suertegaray (1988)

Tabela 2
2 - CARACTERÍSTICAS DA ÁREA

O sudoeste do Rio Grande do Sul, é a região que apresenta expressiva ocorrência de áreas arenosas, desprovidas de cobertura vegetal. Estas áreas reconhecidas regionalmente como areais localizam-se mais precisamente entre as latitudes de 28°00' e 31°00' S e as longitudes 54°30' e 58°45' W Gr (Fig.1).

Os areais, cuja existência é remota, estudos do século passado, já os descrevem, tem sido a partir de 1970 alvo de muita discussão. A partir desta década, reconhecidos como um problema de degradação ambiental expressiva passam a ser concebidos, por alguns estudiosos como desertos, enquanto o processo que lhes dá origem é denominado desertificação. Não desconhecendo a possibilidade de concebê-los como desertos ou áreas em desertificação do ponto de vista ecológico, assumimos neste trabalho a denominação local e historicamente reconhecida de areais. Optamos por esta denominação porque este processo de degradação do solo ocorre em áreas de clima úmido, médias anuais em torno de 1400 mm. Índices estes muito superiores àqueles definidos para regiões áridas e semi-áridas.

Assim, entendemos como areais, manchas de pequeno, médio e grande porte, que se individualizam ao longo de uma área de cobertura vegetal, por serem constituidas de areais, sem cobertura vegetal e em constante ataque por processos pluviais e eólicos. Além destas manchas a área também apresenta o que denominamos focos de arenização, áreas onde a cobertura vegetal é rarefeita e onde é significativa a presença de ravinhas e voçorocas. Por arenização entende-se o processo que daria origem aos areais e consiste no “Retrabalhamento de depósitos areníticos pouco ou nada consolidados e que promovem, nessas áreas, uma dificuldade de fixação da vegetação devido à constante mobilidade dos sedimentos” (Suertegaray 1986).

O processo de arenização e a ocorrência de areais, pode-se dizer tem um padrão de localização características na área ou seja, dominam predominantemente as médias vertentes das colinas ou morros testemunhos, formas de relevo típicos da área. O substrato sobre os quais se desenvolve este processo é arenítico, decorrente na sua grande parte, da deposição eólica, precitaria. A vegetação original é gramínea. Estudos de geologia feitos recentemente por Meireiros, Veiga e Suertegaray (1987), indicam para essas áreas duas unidades areníticas diferenciadas, cuja idade provavelmente cenozóica. Nestes setores (média vertentes) dominam processos de ravinamentos e voçorocamentos, associados em geral as bacias de captação fluvial à montante. O progressivo desenvolvimento de ravinhas e voçorocas levaria em fases posteriores a uma coalescência de depósitos à jusante associado a expansão lateral e remontante das feições ravina e voçoroca. Como resultado teríamos a formação do areal propriamente dito (Fig. 2, 3 e 4). As áreas mais deprimidas da topografia regional constituem às várzeas
dos rios. Estas caracterizam-se pela presença de solos argilo-arenosos com elevado teor de matéria-orgânica, por conseguinte não são áreas de ocorrência de areais conforme definidas anteriormente. Ao longo dos rios nessas áreas há presença de depósitos areníticos, características de rios meandríticos apresentando-se em forma de meia lua. Localizam-se nas curvas dos rios ao longo de seu leito. Há também depósitos fluviais no interior dos leitos. Estes são excluídos de nossa definição de areais, pois tratam-se de depósitos decorrentes de processos diferentes daqueles da média encosta.

É importante frizar que na região de ocorrência de areais dominam os solos arenosos. Estes apresentam diferentes teores de areia. A análise preliminar feita indica para as amostras da Unidade B (unidade edólica), predominância de areia (67%, 27% e 94.88%). Estes dados referem-se a unidade onde predominam os areais, os valores menores correspondem as áreas cuja cobertura vegetal é gramínea. O valor 94,88% é representativo a um areal propriamente dito, portanto, área sem cobertura vegetal, que sofre constante processo de remoção de sedimentos pelo vento e/ou água. Valores menores, aparentando percentuais de 46,12% de areia, são indicativos da unidade A (unidade fluvial).

Estes valores, indicando a predominância de areia nos depósitos de média encosta, associados a inexistência de vegetação (sobre os areais propriamente ditos), a posição que ocupam na vertente e a forma característica (irregular), são elementos de contexto que nortearam a avaliação visual e digital dos areais na imagem LANDSAT, conforme explica-se a seguir.

3 - METODOLOGIA E RESULTADOS

A identificação e a quantificação dos areais de SW do Rio Grande do Sul foi elaborada seguindo-se as etapas abaixo caracterizadas.

As três primeiras etapas foram desenvolvidas anteriormente e compreendem fases do trabalho de Suertegaray (1988) referido no histórico.

1. Reconhecimento das grandes manchas arenosas através da interpretação visual de imagens em produto fotográfico na escala de 1:500.000.
2. Mapeamento na escala de 1:250.000 das manchas arenosas identificadas.
3. Reconhecimento de campo e comprovação da interpretação visual.
Tomando como base o reconhecimento dos areais em termos de localização, distribuição, génese e características físicas a eles associados a sequência metodológica seguida consistiu em:

4. Identificação dos areais
 Nesta etapa é feito primeiro uma identificação visual com base na localização e contexto previamente definidos. Em síntese consistiu em identificar as áreas de ocorrência de areais/desertos demonstrando sua posição diferenciada de outras áreas possíveis de ocorrência de depósitos de areia (a exemplo dos depósitos fluviais). Outro elemento de identificação foi a forma, não geométrica em oposição às áreas geométricas de agricultura e as formas em meia lua dos depósitos méandricos dos rios. O contraste visual entre a meia encosta, área de ocorrência) com predominância de areia em relação às escarpas mais elevadas, em geral recobertas de vegetação arbórea e a várzea com predomínio de solos argilo-arenoso também possibilitaram a identificação destes areais.

4.1 A escolha da escala
 Em contrapartida as escalas anteriormente utilizadas, optou-se pela utilização da escala 1:50.000, que possibilitou uma melhor identificação dos areais.

4.2 Avaliação espectral utilizada
 Esta avaliação constitui a base de informações para a escolha da banda espectral mais favorável a identificação das áreas em estudo entre as bandas disponíveis no C.S.R., bandas 3,4 e 5. Para tal escolha levou-se em consideração a distinção de reflectância entre solos arenosos (área dos areais) e solos com elevado teor argila e matéria orgânica (topos e várzeas de morros tabulares). Da análise das 3 bandas optou-se pela Banda 5.

5. Classificação através do método paralelepípedo
 Consiste em delimitar valores mínimos e máximos de níveis de cinza para a classe ou classes estabelecidas.
 O intervalo estabelecido para definição das classes levou em conta a data de imagem utilizada 5/11/89, o contexto e a banda escolhida, associado ao conhecimento prévio de campo.
 Com base nesses fatores chegou-se a definição do intervalo de nível de cinza de 210-255.

5.1 - Definição das classes
 A partir de classificação inicial gerada, optou-se por uma diferenciação entre duas classes - areais e focos de arenização. Entendendo-se os areais como áreas de significativa expressão visual e focos de arenização pequenas áreas arenosas ou áreas com processo de ravinamento e voçorocamento.

6. - Quantificação dos areais
 O processo acima descrito permitiu os seguintes resultados (tabela 3).
<table>
<thead>
<tr>
<th>Fonte de Dados</th>
<th>Total (ha)</th>
<th>Nº de Areais</th>
<th>Área (ha)</th>
<th>% de ocor.</th>
<th>Arenizaçao sobre o Total (ha)</th>
<th>% Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alegrete</td>
<td>Imagem de satellite</td>
<td>846,400</td>
<td>90</td>
<td>1,721,56</td>
<td>05,71</td>
<td>0,21%</td>
</tr>
<tr>
<td></td>
<td>Data:05/11/89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sao Francisco de Assis</td>
<td>Imagem de satellite</td>
<td>677,100</td>
<td>51</td>
<td>2,091,58</td>
<td>11,464,82</td>
<td>0,52%</td>
</tr>
<tr>
<td></td>
<td>Data:05/11/89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quadai</td>
<td>Imagem de satellite</td>
<td>998,500</td>
<td>27</td>
<td>278,47</td>
<td>114,02</td>
<td>0,11%</td>
</tr>
<tr>
<td></td>
<td>Data:05/11/89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Itaqui</td>
<td>Imagem de satellite</td>
<td>502,400</td>
<td>24</td>
<td>600,71</td>
<td>0,11%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data:05/11/89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>2,454,400</td>
<td>171</td>
<td>4,747,53</td>
<td>1,675,45</td>
<td>0,26%</td>
</tr>
</tbody>
</table>

TABELA 3
DISTRIBUIÇÃO E ÁREA EM HECTARE DOS AREAIAS DO SW DO RS

4 - CONCLUSÕES

- Necessidade efetiva de conhecimento de campo, do alvo a ser estudado;
- Necessidade de parâmetros físicos;
- Monitoramento, trata-se do 2º trabalho ao nível regional;
- Avaliação da expansão/retração de áreas individualizadas;
- Avaliação multitemporal;
- Verificação efetiva de expansão/ ou retração dos areais só será possível a partir deste levantamento. Uma vez que os levantamentos anteriores foram elaborados, ou em áreas pequenas ou em áreas reduzidas.
5 - BIBLIOGRAFIA

Figura 1 — Localização da área de ocorrência de areais no Rio Grande do Sul — Região Sudoeste

Figura 10 — Esquema de interpretação da gênese dos areais