ALGORTIHMO DE METODOLOGIA DE PROCESSAMENTO PARA SÍNTESE DE IMAGENS
DE RADAR DE ABERTURA SINTÉTICA (SAR)

José Claudio Mura
Instituto de Pesquisas Espaciais-INPE
Departamento de Processamento de Imagens-DPI
Caixa Postal 515
12201 - São José dos Campos - SP

RESUMO

Esse trabalho descreve o princípio básico de imagemamento por microondas, utilizando Radar de Abertura Sintética (SAR), bem como a metodologia de processamento digital de imagens SAR. O trabalho utiliza o modelo Doppler para a formulação do problema que envolve o processamento desse tipo de imagem. A partir desse modelo deriva-se as equações básicas de processamento, que consistem basicamente na compressão de pulsos em "range" e azimute, utilizando filtros Casados. Também é apresentado o volume de cálculos aproximados que envolve esse tipo de processamento. No final do trabalho são apresentados alguns aspectos do processamento "multi-look", utilizado na diminuição do ruído "Speckle". O objetivo do trabalho é fornecer subsídios para o desenvolvimento de "software" de geração de imagens SAR.

ABSTRACT

The Synthetic Aperture Radar (SAR) concepts is presented in this work, and describe a digital processing method to SAR system. The Doppler model is used to derive algorithms to the SAR processing. Matched Filters are used to range and azimuth compression. This work presents also the number of arithmetic requirements to the SAR processing. Finally, some aspects of multi-look processing are presented.

1- INTRODUÇÃO

Sistema de Imageamento por Microondas consiste de um radar de visada lateral, instalado em uma plataforma do tipo avião ou satélite por exemplo, que envia a intervalos regulares pulsos de microondas sobre a área a ser imageada. O eco retornado de cada pulso é armazenado e posteriormente processado, gerando uma imagem de duas dimensões.

A vantagem desse sistema é a independência das condições atmosféricas e do tempo, podendo ser produzidas imagens mesmo com cobertura total de nuvens ou noitebras.

A alta resolução dessas imagens é conseguida através de duas técnicas de processamento, a "compressão de pulsos" e a "abertura sintética". Essa última técnica de processamento leva em conta o movimento relativo entre a plataforma e o chão, para produzir o mesmo efeito de uma antena de grande comprimento (responsável pela resolução em azimute, ou seja, paralelo ao voo).

O processamento das imagens de Radar de Abertura Sintética (SAR) envolve certas complexidades, um volume de cálculos muito grande e um sistema de processamento com boa capacidade de memória.

Esse trabalho apresenta as equações básicas do SAR e a descrição de uma metodologia de processamento para dados adquiridos por satélite, que envolve alguns fatores a mais em relação aos adquiridos por avião.
2- PRINCÍPIOS DE IMAGENAMENTO POR RADAR DE ABERTURA SINTÉTICA

O princípio de imagemamento por Radar de Abertura Sintética do tipo "side-looking" é apresentado na Figura 2.1. A plataforma (avião ou satélite) viaja a uma velocidade V em relação ao chão, a uma altura H e com o apontamento da antena formando um ângulo θ em relação ao nadir da plataforma.

![Fig. 2.1- Geometria do sistema SAR](image)

A medida que a plataforma se desloca, o transmissor envia pulsos de largura T_p a intervalos regulares de T segundos, como mostra a Figura 2.2.

![Fig. 2.2- Sinal transmitido](image)

O pulso transmitido é modulado linearmente em frequência (FM), também conhecido como "chirp", possui uma duração de T_p segundos e uma largura de banda $B_p = \alpha T_p$. Ele é definido por:

$$f(t) = \cos[2\pi(f_0 t + (1/2)\alpha t^2)] \cdot \text{rect}(t)$$

onde $s(t) = \exp(j\pi\alpha t^2) \cdot \text{rect}(t)$

$$g(r_0, t, n) = \sigma(r_0, t) \cdot W(r_0, t) \cdot s(t-2R/c-nT) \cdot \exp[2\pi f_0 (t-2R/c-nT)]$$

onde: $W(r_0, t) =$ ganho da antena na posição de "range" r_0 e azimute (V, t).

$$\sigma(r_0, t) = \text{Índice de reflexão da secção transversal do alvo em relação à antena.}$$

$$2R/c = \text{Tempo de ida e volta do pulso sobre o alvo}$$

$$c = \text{Velocidade da luz.}$$

Após a demodulação em quadratura do sinal recebido, utilizada para registrar a fase do sinal e eliminar a portadora, o sinal complexo resultante é dado por:

$$g_d(r_0, t, n) = A(r_0, t) \cdot s(t-2R/c-nT) \cdot \exp[-j(4\pi f_0 R/c)]$$

onde: $A(r_0, t) = \sigma(r_0, t) \cdot W(r_0, t)$

2.1- Análise do movimento plataforma-alvo

Para se entender melhor o que ocorre em um sistema de imagemamento SAR, utiliza-se como modelo o comportamento de um alvo pontual, desde sua entrada até a saída do campo de iluminação da antena.

A Figura 2.3 apresenta a geometria de uma plataforma SAR, mostrando a entrada do alvo P no campo da antena no instante t_0, até sua saída no instante t_s. O tempo (t_s-t_0) é chamado de tempo de integração e define a abertura sintética dada por $V \cdot (t_s-t_0)$. O tempo t_0 representa o instante de menor distância antena-alvo, R_0.

Durante o tempo (t_s-t_0) milhares de pulsos são emitidos pelo radar, sendo os ecos desses pulsos recebidos e armazenados em algum dispositivo de memória.

Fig. 2.3 - Variação da distância plataforma-alvo

A distância R entre plataforma-alvo varia de forma quadrática para imagemamento do tipo "side-looking", com direção do voo perpendicular ao eixo "range" (\(\psi = 90^\circ \)). Para satélites entretanto, devido a problemas de controle de altitude e do efeito de rotação da Terra, o ângulo \(\psi \) (denominado "squint angle") não é exatamente de \(90^\circ \), isso introduz uma componente linear significativa na variação da distância R. A distância R nessas características é dada por (HOVANESSIAN, 1980):

\[
R = R_0 + V \cos \psi t + [1/(2R_0)](V \sin \psi)^2 t^2
\]

(2.5)

Usando o fato de que o deslocamento de fase de \(2\pi \) representa uma distância equivalente ao comprimento de onda \(\lambda \). A distância 2R (ida e volta) pode ser colocada em termos de deslocamento de fase, multiplicando ambos os lados da Eqação (2.5) por \(2\pi/\lambda \), ou seja:

\[
\phi(t) = (4\pi/\lambda)R_0 + (4\pi/\lambda)V \cos \psi t + [2\pi/(\lambda R_0)](V \sin \psi)^2 t^2
\]

(2.6)

onde \(\lambda \) = comprimento de onda de \(f_0 \)

O sinal \(\phi(t) \) representa o deslocamento de fase entre o sinal transmitido e o recebido. A variação de fase no tempo resulta em uma frequência instantânea dada por:

\[
f_d = (1/2\pi)\frac{d\phi(t)}{dt} = (2\pi/\lambda)V \cos \psi + [1/(\lambda R_0)](V \sin \psi)^2 t
\]

(2.7)

onde: \((2V/\lambda)\cos \psi = f_d = frequência Doppler central ("Doppler center frequency")

\(\quad \)

(2.8)

\[1/(\lambda R_0)(V \sin \psi)^2 = f_d = variação da frequência Doppler ("Doppler frequency rate")\]

(2.9)

Da Eqação (2.7) vê-se que a resposta em frequência de um alvo pontual no sentido de azimute pode ser vista como uma forma de onda modulada linearmente em frequência (FM), com um coeficiente de modulação dado por:

\[
\alpha_a = 1/(\lambda R_0)(V \sin \psi)^2
\]

A Figura 2.4 representa a variação de fase e frequência para um alvo pontual no sentido azimutal.

Fig. 2.4 - Variação da fase e frequência entre plataforma-alvo

Para atingir uma alta resolução na imagem de saída, utiliza-se o método de processamento focado, que consiste na correção da fase do sinal recebido de acordo com a Eqação (2.6). Substituindo as Eqações (2.8) e (2.9) em (2.6) tem-se:

\[
\phi(t) = 4\pi R_0/\lambda + 2\pi f_d t + 2\pi f_d t^2
\]

(2.10)

A Eqação (2.10) é usada quando se utiliza a formulação Doppler para processamento de azimute. Ela descreve a variação de fase do sinal recebido em termos da frequência Doppler e da variação dessa frequência, que são parâmetros necessários para a construção da função de referência utilizada no processamento azimal.

2.2- Resolução em "range"

A resolução em "range" no chão (eixo r) depende da largura do pulso transmitido (HOVANESSIAN, 1980), ou seja:
onde: \(c \) é a velocidade da luz e \(\theta \) é o ângulo entre o apontamento da antena e o nadir da plataforma.

2.3 - Resolução em azimute

A resolução em azimute refere-se a resolução na direção do voo. No radar de abertura real, a resolução é proporcional ao tamanho da antena (quanto maior mais alta é a resolução). No SAR, o tamanho da antena é de grande tamanho através da técnica de processamento coerente. Na Figura 2.3 por exemplo, o tamanho da antena criada sinteticamente seria de \(V_{ts-te} \) metros, que é todo percurso em que a plataforma vê o alvo pontual. Para processamento do tipo focado, a resolução em azimute (NOVANESSIAN, 1980), é dada por:

\[
\sigma_a = 1/2 \tag{2.12}
\]

onde \(L \) é o comprimento físico da antena.

A resolução em azimute em SAR, com processamento focado, independe do "range" e do comprimento de onda, dependendo apenas do comprimento físico da antena.

2.4 - Dado bruto SAR

O eco recebido de cada pulso transmitido é amostrado e digitalizado, formando uma sequência de dados de compriimento \(M \) por pulso. A Figura 2.5 ilustra a transmissão e recepção de um pulso. Embora a plataforma do tipo satélite o pulso transmitido seja recebido apenas após vários outros pulsos, devido à distância entre a plataforma e o solo, isso é indiferente no processamento SAR.

O sinal recebido entre os instantes \(2Rn/c \) e \(2Rf/c \) (onde \(Rn \) = "near range" e \(Rf \) = "far range"), é a soma das contribuições de todos os elementos de área refletidos, da área total iluminada pela antena. Isso representa a integração do sinal representado pela Equação (2.4), para todo "range" e azimute da área iluminada por um pulso, ou seja:

\[
g(t,n) = \int_{-\infty}^{\infty} g_d(r,t,n) \, dr \tag{2.13}
\]

De acordo com o teorema da amostragem de Nyquist, a frequência de amostragem dos dados deve ser no mínimo duas vezes a frequência máxima do sinal. No caso do sinal tipo "chirp" a frequência é dada por:

\[
f_a > 2[f_0 + (1/2)\alpha T_p] \tag{2.14}
\]

Isso resulta em um número \(L \) de amostras necessárias para representar a função de referência (pulso transmitido) dado por:

\[
L > T_p.2[f_0 + (1/2)\alpha T_p] \tag{2.15}
\]

Cada pulso recebido, produz um número de amostras \(M \), também chamado de "range gates" ou "range bins", definida no intervalo \(2(Rf-Rn)/c \), dado por:

\[
M = \lfloor 2(Rf-Rn)/c \rfloor f_a \tag{2.16}
\]

onde \(Rf \) e \(Rn \) são as distâncias para um ângulo de radiação da antena correspondente a 3dB de potência (meia potência), como mostra a Figura 2.6.

![Fig. 2.6 - Distâncias limites](image)

Para achar o número de "range gates", o teorema de Nyquist é aplicado agora sobre a frequência Doppler no sentido azimutal. Da Equação (2.6) obtém-se a máxima frequência Doppler atingível, ou seja:

\[
f_{d,max} = (2/\lambda)\cos \psi + (1/\lambda R_0)(\psi \sin \psi)^2 \tag{2.17}
\]
onde \(t_i = (t_s - t_e) \) é o tempo em que a plataforma levou para percorrer o comprimento sintético da antena, conforme Figura 2.3. Isto resulta em um número \(N \) necessário dado por:

\[
N > (t_s - t_e) \cdot 2f_{\text{max}}
\]

O número \(N \) está diretamente ligado à frequência de repetição do pulso (PRF). Esta frequência deve ser tal que não provoque um "aliasing" significativo na variação de frequência Doppler. O número de amostras total para processamento de uma imagem é de \(N \cdot M \) amostras.

2.5 - Deslocamento de "range e curvatura"

O deslocamento e a curvatura de "range" são efeitos que aumentam a complexidade do processamento SAR e que influenciam na qualidade da imagem final.

O deslocamento de "range", conhecido como "range walk", ocorre quando a antena não é apontada exatamente ao longo da linha de Doppler zero (perpendicular ao eixo de azimute), ou seja, quando o "squint angle" (ângulo \(\psi \) da Figura 2.3) não é exatamente de 90 graus. "Range walk" é um efeito linear e está relacionado ao termo em \(t \) da Equação (2.5).

A curvatura de "range", conhecida como "range curvature" é significativa quando a abertura sintética é muito grande comparada com a distância plataforma-alvo. "Range curvature" é um efeito quadrático e está relacionado ao termo \(t^2 \) da Equação (2.5).

A Figura 2.7 apresenta a curva da distância entre a plataforma e um alvo pontual durante a abertura sintética, \((V\cdot t_s - V\cdot t_e) \), projetada no plano de "range" versus azimute. Representando os dois efeitos combinados, também chamados de "range cell migration".

A curva da Figura 2.7 implica em que amostras de um certo alvo pontual, que deveriam estar sempre na mesma posição nos diversos "range gates" obtidos entre \((t_s - t_e) \), não estejam, mas sim em posições diferentes descrevendo uma curva através dos "range gates".

3 - PROCESSAMENTO SAR

A idéia básica do processamento SAR é recuperar o valor \(\sigma \) do alvo. Isso é conseguido através de duas operações de convolução, uma para remover a fase embutida no pulso transmitido e a outra para remover a fase em azimute, que se forma devido a geometria SAR. Essa operação feita em todos os pontos do dado bruto, recuperará o campo bidimensional refletido formando uma imagem.

A forma básica do pulso transmitido e do sinal recebido para um determinado alvo pontual pode ser dado pela seguinte função:

\[
u(t) = \exp\{2\pi j[\phi_0 + \phi_1 t + (1/2)\phi_2 t^2]\}\]

sendo: \(t \leq T_u/2 \) e

\[T_u = \text{intervalo de definição} \]

\[W_u = \text{largura de banda do sinal}\]

Essa função representa um sinal modulado linearmente em frequência (FM), com frequência instantânea dada por

\[f_u = \phi_1 + (1/2)\phi_2 t \] (3.2)

Fazendo a convolução do sinal \(u(t) \) com uma função de referência dada pelo complexo conjugado dele, \(u^*(t) \), ou seja

\[v(t) = \int_{-T_u/2}^{T_u/2} u(t - \xi) \cdot u^*(\xi) \cdot d\xi \] (3.3)

obtém-se uma função \(v(t) \) do tipo \(\text{sen}(x)/x \), que representa o sinal \(u(t) \) comprimido em um pulso do tipo sinc(x). A energia contida em \(u(t) \) no intervalo \(T_u \) é praticamente toda transferida para o intervalo \(2/W_u \).

A compressão do pulso em "range" e em azimute possibilita a obtenção de uma imagem SAR de alta resolução.

A Figura 3.1a mostra um sinal do tipo "chirp" e a correspondente saída, quando esse pulso é convolvido com seu complexo conjugado. A Figura 3.1b mostra a forma do pulso de saída.
Fig. 3.1 - Pulso "chirp" comprimido

A convolução definida na Equação 3.3 é conhecida como Filtro Casado ("Matched Filter"). Esse tipo de filtro maximiza a relação sinal/ruido (S/N) na saída, quando o ruído é aditivo e Gaussiano.

A aplicação do Filtro Casado em "range" e azimute permite a reconstrução da cena formada pela reflexibilidade do chão ao sinal de microondas.

A compressão de pulso é o mecanismo que garante a obtenção de uma imagem de alta resolução em SAR.

3.1 - Processamento em "range"

O primeiro estágio do processamento SAR envolve a compressão de pulso na dimensão "range", ou seja, nas M amostras que compõem um "range gates". Isso é conseguido pela convolução das M amostras dos dados brutos com as L amostras da função de referência, que é o complexo conjugado do sinal transmitido f(x). Em termos do Filtro Casado isso significa a filtragem das M amostras com um filtro que tenha uma resposta impulssiva igual a f*(t), ou seja, para cada saída do filtro (pulso comprimido) tem-se a seguinte operação:

\[y(m,n) = \sum_{i=0}^{L-1} f^*(i) \cdot g_a(m+i,n) \] \hspace{1cm} (3.4)

onde: \(y(m,n) \) é a m-ésima saída do Filtro Casado da n-ésima "range gates"

\[f(t) = \sum_{i=0}^{L-1} f(t) \cdot \delta(t-i\tau) \] \hspace{1cm} (3.5)

\(\delta(t) \) é a função de amostragem Delta de Dirac

\[g_a(t,n) = \sum_{i=0}^{M-1} g(t,n) \cdot \delta(t-i\tau) \] \hspace{1cm} (3.6)

Fazendo a operação da Equação (3.4) em todas as M amostras, obtém-se um novo conjunto de dados de (M-L) amostras, também chamado de "range gates".

A operação de convolução da Equação (3.4) pode ser realizada no domínio da frequência, ou seja, dada a transformada discreta de Fourier (DFT) de \(f^*(t) \) e de \(g_a(t,n) \) para todo n, definidos respectivamente por:

\[F(k) = \sum_{i=0}^{L-1} f^*(i) \exp[-j(2\pi/L)i.k] \] \hspace{1cm} (3.7)

onde \(k = 0, 1, ..., (L-1) \)

\[G(l,n) = \sum_{i=0}^{M-1} g_a(i,n) \exp[-j(2\pi/M)i.l] \] \hspace{1cm} (3.8)

onde \(l = 0, 1, ..., (M-1) \)

Pelo teorema da convolução:

\[Y(m,n) = F(k) \cdot G(l,n) \] \hspace{1cm} (3.9)

onde \(m = 0, 1, ..., (M-L-1) \)

e \(Y(m,n) \) corresponde a m-ésima saída do filtro no domínio da frequência.

Isso significa que a convolução no domínio do tempo corresponde a multiplicação no domínio de frequência.

A volta de \(Y(m,n) \) para o domínio espacial é realizada através da transformada discreta inversa de Fourier (IDFT), definida por:

\[y(m,n) = \left[1/(M-L)\right] \cdot \sum_{i=0}^{M-L-1} \cdot \exp[-j(2\pi/M-L)im] \] \hspace{1cm} (3.10)

onde \(m = 0, 1, ..., (M-L-1) \)

O cálculo mais rápido das transformadas discretas de Fourier pode ser realizado pelo uso da FFT (Fast Fourier Transform).

Cada amostra convoluita \(Y(m,n) \), quando se utiliza FFT, resulta no seguinte número de operações complexas:

\[3L \cdot \log_2 L \] \hspace{1cm} \text{operações}

onde cada operação complexa é formada por 4 multiplicações reais mais duas adições reais.
A filtragem de um "range gates" de M amostras complexas, necessitará de (M-L) operações de convolução, o que resultará em um número de operações complexas dada por:

\[(M-L) \cdot 3L \cdot \log_2 L\] operações

Acréscendo a esse número as operações de FFT de \(g(t,n)\) e a IFFT de \(Y(t,n)\), tem-se para cada "range gates" filtrado o seguinte número de operações:

\[Or = (M-L) \cdot 3L \cdot \log_2 L + 2M \cdot \log_2 M + 2(M-L) \cdot \log_2 (M-L)\] (3.8)

O processamento em "range" é realizado nas \(N\) "range gates" que formam o conjunto de dados brutos. Portanto, nesse processamento o número total de operações é de:

\[Opr = Or \cdot N\] operações complexas (3.9)

3.2 - Correção de "range walk"

A correção de "range cell migration" é em geral realizada em duas etapas, primeiro corrigi-se o deslocamento linear, "range walk", em seguida a curva quadrática, "range curvature".

A correção de "range walk" é a mais simples pois o efeito é provocado por um deslocamento linear dos dados armazenados, de acordo com o deslocamento (V,t) da plataforma (termo em t da Equação (2.5)).

A correção consiste em deslocar todos os dados de um "range gates", proporcional ao deslocamento (V,t) à que ele pertence dentro do tempo de integração (ts-te). Realiza-se essa operação com os dados no domínio espacial.

A correção de "range curvature" é realizada quando os dados estão dispostos não mais em "range gates", mas em linhas azimutais.

3.3 - Operação de "corner turning"

Geralmente os dados brutos estão armazenados em disco ou fita magnética, em uma sequência de "range gates". O processamento em "range" não altera essa disposição, ou seja, cada "range gates" processado volta a ser armazenado sequencialmente.

Contudo, no processamento em azimute as amostras que formam o vetor de dados a ser processado, estão uma em cada um dos \(N\) "range gates", o que torna o acesso aos dados muito difícil. Para solucionar esse problema, todos as \(N\) amostras correspondentes a mesma posição nos \(N\) "range gates" são colocadas sequencialmente em linha, essa operação é conhecida como "corner turning".

Pode-se dizer que o que era coluna virou linha e vice-versa, resultando em um bloco de dados de (M-L) linhas com \(N\) amostras por linha.

3.4 - Correção de "range curvature"

A correção de "range curvature" é mais complicada que a de deslocamento. Por exemplo, dois alvos pontuais com a mesma distância de "range" formam duas curvas iguais mas não coincidentes, quando os dados estão no domínio espacial, ver Figura 3.2.

O que se faz então é passar os dados para o domínio da frequência, fazendo com que as curvas sejam coincidentes. Isso é possível devido as mesmas características espectrais provocados pela modulação FM linear em azimute nos dois pontos. A partir daí corrigi-se a curva no bloco de dados agora no domínio da frequência.

![Fig. 3.2 - Curvas de dois alvos](a) no plano r versus a (b) no plano r versus f

Após o "corner turning" uma linha de dados é representada por

\[y(n,m)\]

onde: \(n = 0,1,...,N-1\) índice de colun; e \(m = 0,1,...,M-L-1\) o índice de linha
Para se fazer o processamento de "range curvature" deve-se aplicar o DFT em cada linha, ou seja:

\[Z(n,m) = \sum_{i=0}^{N-1} y(i,m) \exp[-j(2\pi/N).i.n] \]

onde \(n = 0, 1, \ldots, N-1 \)

Após a transformação de todas as \((M\times L)\) linhas, realiza-se a correção de "range curvature". O método comumente utilizado é o de subdividir as linhas de amostras espectrais em segmentos, tal que o aumento da curvatura dentro de um segmento não exceda aquela linha. Em seguida os segmentos são arranjados de tal maneira que cada linha espectral possua apenas segmentos da mesma curva.

3.5 - Processamento em azimute

Após a correção de "range cell migration", os dados estão prontos para serem processados em azimute, ou seja, a compressão de pulso na dimensão de azimute.

Esse processamento é realizado através da convolução das \(N\) amostras de cada linha espectral com as \(L_q\) amostras do complexo conjugado da função de referência \(q(n)\), ou seja, a filtragem das \(N\) amostras através de um filtro caso que tenha uma resposta impulsa igual a \(q^*(n)\).

A função de referência \(q(n)\) é construída de \(L_q\) amostras tomadas durante o tempo de integração, \((t_s-t_e)\), na taxa de \(1/T\), ou seja,

\[L_q = (t_s-t_e)/T \]

A função \(q(t)\) tem a fase descrita na Equação (2.10), ou seja, é uma função modulada linearmente em frequência (FM). Sua construção é realizada a partir da frequência Doppler central, \(f_d\), e da variação da frequência Doppler, \(f_d\). Os parâmetros para a construção dessa função são retirados das informações fornecidas pela plataforma (dados de efemérides, velocidade, altitude, etc...).

Construída a função de referência, faz-se o complexo conjugado desta, e em seguida aplica-se a transformada discreta de Fourier, ou seja:

\[Q(k) = \sum_{l=0}^{L_q-1} q^*(l) \exp[-j(2\pi/L_q).l.k] \]

onde \(k = 0, 1, 2, \ldots, L_q-1 \)

A compressão das amostras no sentido azimutal é realizada pela aplicação do Filtro Casado nas \(N\) amostras da seguinte forma:

\[V(l,m) = Z(n,m) \cdot Q(k) \]

onde: \(l = 0, 1, \ldots, N-L_q-1 \)
\(m = 0, 1, \ldots, M-L\), índice da linha espectral

V(l,m) corresponde a saída do filtro no domínio da frequência. Após a aplicação da transformada discreta inversa de Fourier (IFFT), recupera-se o sinal para o domínio espacial.

A matriz de dados obtida de \((M\times L)\) linhas por \((N-L_q)\) colunas, é a matriz de dados complexos final. Para se chegar a imagem final toma-se o módulo de cada dado complexo e em seguida normaliza-se esses dados transformando-os em pixels da imagem.

O número de operações do processamento em azimute é da ordem de:

\[O_p = O_A \cdot (M\times L) \] operações complexas

onde \(O_A = (N-L_q).3L_q.\log_2L_q + 2N.\log_4N + 2(N-L_q).\log_2(N-L_q) \)

3.6 - Processamento "multi-look"

Um dos principais fatores que degradam a qualidade da imagem SAR é o ruído "Speckle" na imagem final. "Speckle" é um ruído multiplicativo que é proporcional a intensidade do sinal recebido de um dado alvo. Ele é resultado do processamento coerente realizado em SAR, que adiciona sinais construtivos e destrutivos.

Para amenizar esse problema, utiliza-se o processamento "multi-look", que consiste em dividir em "looks" o tempo de integração \((t_s-t_e)\) que define o comprimento sintético da antena.

Essa divisão causa diminuição na resolução em azimute proporcional ao número de "looks" (devido a diminuição do comprimento sintético da antena). Como a resolução em azimute é normalmente maior que a de "range", uma divisão em até 8 looks pode ser feita em alguns casos, sem comprometer muito a resolução espacial final.

A Figura 3.3 mostra uma divisão de 4 "looks" no tempo de integração.
A não sobreposição dos tempos de cada "look" implica na não sobreposição de frequência, ou seja, cada segmento tem a sua faixa de frequência com uma largura de banda 4 vezes menor, resultando em uma resolução também 4 vezes menor.

O processamento "multi-look" é realizado no processamento em azimute. Para cada "look" cria-se a função de referência q(t) definida dentro do intervalo do "look" e aplica-se o procedimento descrito no item 3.5.

Após o processamento dos "looks" casa-se as imagens resultantes e faz-se a média dos pixels, gerando uma imagem com uma resolução menor em azimute, mas com um ruído "Speckle" menor.

4 - CONCLUSÕES

Esse trabalho procurou mostrar a complexidade e o volume de cálculos envolvidos no processamento SAR. Nota-se nos processamentos de "range" e azimute descritos nos itens 3.2 e 3.5 respectivamente, um grande volume de cálculos complexos. Para exemplificar, os valores de M e N do satélite ERS-1 é da ordem de:

\[M = 5400 \text{ amostras} \]
\[N = 23572 \text{ amostras} \]

Nesse caso, como os valores de M e N são grandes, há necessidade de se trabalhar com FFTs menores (da ordem de 1024) e com sobreposição de cálculos, fazendo com que o volume de cálculos cresça mais ainda.

A necessidade de se fazer o processamento "multi-look" praticamente multiplica o número de operações pelo número de "looks".

Esse trabalho não abrange todos os aspectos do processamento SAR propostamente. Há aspectos que não foram mencionados, por exemplo, a correção geométrica e radiométrica dos dados de imagem. Aspectos de melhoria da qualidade, como por exemplo, a convolução das funções de referências com "funções de pesos", para aumentar a relação sinal ruído das imagens também não foram comentados, etc...

Esse trabalho não esgota o assunto, apenas serve como uma introdução ao processamento de imagens SAR.

5 - REFERÊNCIAS BIBLIOGRÁFICAS

TOMY:SU, K. Review of synthetic aperture radar (SAR) with applications to imaging of the ocean surface. Proceeding of the IEEE Vol 66, 565-583, may 1978