MAPEAMENTO MORFOESTRUTURAL DA REGIÃO DE CORGUINTO, ROCHEDO, RIO NEGRO E SÃO GABRIEL DO OESTE (MS), ATRAVÉS DE DADOS MSS/RBV DO LANDSAT

T.M. Sausen e H. Kux
Instituto de Pesquisas Espaciais
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Caixa Postal 515, 12200 - São José dos Campos, SP. Brasil

RESUMO

O objetivo deste trabalho é a aplicação da metodologia proposta por Bashenina e Treshchov para mapeamento morfoestrutural de uma dada área, fazendo-se uso de dados dos sistemas sensores (RBV e MSS) do satélite LANDSAT. Para o desenvolvimento do trabalho utilizou-se como área teste a região de Rochedo, Corguinho, Rio Negro e São Gabriel do Oeste, no Estado do Mato Grosso do Sul. Utilizaram-se imagens MSS e RBV, na escala 1:250.000, órbita 248, ponto 26. Fez-se a interpretação visual das imagens para a caracterização da rede drenagem e das feições geomorfológicas. Outros dados foram obtidos através do mapa altimétrico e do trabalho de campo na área. Os resultados obtidos permitiram constatar que esta metodologia, apesar de ter sido desenvolvida para fotografias aéreas, é aplicável às imagens dos sistemas sensores do satélite LANDSAT, desde que se leve em consideração a diferença de escala entre os diferentes tipos de dados.

ABSTRACT

The objective of this study is to apply the methodology developed by Bashenina and Treshchov to morphostructural mapping using LANDSAT data (RBV and MSS). The region of Rochedo, Corguinho, Rio Negro and São Gabriel do Oeste in Mato Grosso do Sul state was selected as test sites to apply this methodology. The materials used were MSS and RBV imagery at the scale of 1:250.000, path 248, row 26. The drainage network as well as the main geomorphological features were characterized by means of visual image interpretation. Ancillary data were obtained from altimetric map and field work. The results showed that the methodology developed by Bashenina and Treshchov can be applied using LANDSAT imagery even considering that they have been developed for aerial photographs, since the scale differences are considered.

1. INTRODUÇÃO E OBJETIVO

Tendo em vista que a movimentação de blocos ao longo de falhas é um dos principais agentes de estruturação do relevo (Bashenina and Treshchov, 1971 – apud Demeked, 1972), a análise morfoestrutural é uma técnica amplamente utilizada para mapeamentos geomorfológicos na Rússia (Demek, 1972). Entretanto, as técnicas de análise morfoestrutural propostas por aqueles autores estão baseadas na coleta de dados em fotografias aéreas. Neste contexto, o objetivo deste trabalho é a aplicação das técnicas propostas por Bashenina e Treshchov, para mapeamento morfoestrutural de uma dada área, fazendo-se uso de dados dos sistemas sensores (RBV e MSS) do satélite LANDSAT.

Para isso selecionou-se a área abrangida pelos municípios de Corguinho, Rochedo, Rio Negro, São Gabriel do Oeste, Bandeirantes e Jaguari, no Estado de Mato Grosso do Sul (Figura 1). A área de estudo localiza-se entre as coordenadas de 19°00' a 20°00' de latitude Sul e de 54°00' a 55°00' de longitude oeste, abrangendo uma extensão de 9506 km².

Neste trabalho foram utilizadas imagens do satélite LANDSAT, na escala 1:250.00, abranguindo uma área regional.

2. TÉCNICAS E MATERIAIS UTILIZADOS

2.1 - TÉCNICAS

Neste trabalho foi utilizada apenas uma das quatro subcenas do RBV (subcena A), correspondente a área mapeada a 1/4 da imagem MSS.
O mapeamento geomorfológico se fez conforme os seguintes passos:
- revisão bibliográfica sobre a área de estudo;
- análise visual das imagens MSS, canais 5 e 7, e RBV para identificação, caracterização e elaboração do mapa preliminar das feições morfológicas da área;
- compilação de mapas geológicos e tectônicos para obtenção de informações estruturais da área;
- transferência dessas informações para o mapa de drenagem;
- análise visual das imagens MSS, canal 7 e RBV para identificação, caracterização e elaboração do mapa preliminar das feições morfológicas da área;
- elaboração de um mapa altimétrico da área com o auxílio de cartas topográficas na escala 1:100.000;
- elaboração de perfis geológico-geomorfológicos de seis pontos da área de estudo;
- trabalho de campo na região;
- análise dos dados e elaboração dos mapas finais.

Fig. 1 - Localização da área de estudo.

2.2 - MATERIAIS

Foram utilizados os seguintes materiais:

a) Imagens LANDSAT:
- imagens MSS, canais 5 e 7, na escala 1:250.000, órbita 248, ponto 26, passagem de 26 de julho de 1980;
- imagens RBV, A, na escala 1:250.000, órbita 248, ponto 26, passagem de 18 de abril de 1980;

b) cartas topográficas do IBGE, na escala 1:100.000, folhas Rio Negro, Rochedo,

Campo Grande, Palmeira, Camapuá, Ponte Vermelha, Serra Maracaju, São Francisco de Assis e Jaraguari;

c) mapa geológico do Estado do Mato Grosso do Sul, compilado pela CODESUL, na escala de 1:100.000;

d) mapa tectônico da América do Sul elaborado pelo DNPM, Comission of Geological Mapping of the World (CGMW) e UNESCO, na escala 1:5.000.000.
3. RESULTADOS

3.1 - REDE DE DRENAGEM

Na área de estudo são encontradas quatro bacias hidrográficas secundárias - rios Negro, Aquidauana, Coim e Taboco - todas elas drenam para o rio Paraguai. Apenas os cursos superiores destas bacias correm dentro da área de interesse. Os de maior expressão em área são o Aquidauana (que ocupa 45% da área de estudo) e o rio Negro (que ocupa outros 35%) (Figura 2).

Esta drenagem entalha rochas sedimentares e rochas básicas da "Bacia Sedimentar do Paraná" (Inocêncio, 1977). É formada por rios de planalto caracterizados pela presença de: corredoiras, rápidas e queda d'água.

A serra de Maracaju funciona como frente de uma cuesta, cujo reverso declina suavemente para a calha do Paraná a leste. Ela constitui o divisor de águas entre as bacias dos rios Paraná e Paraguai. Mantém direção Norte/Sul, sendo uma superfície de cimeira do Planalto Sedimentar da Bacia do Paraná.

Grande parte do traçado da rede de drenagem foi obtida através das imagens do sistema MSS (especialmente os rios de maior porte). Estas imagens são as mais adequadas para este tipo de análise.

As imagens do sistema sensor RBV, por serem obtidas somente na faixa visível do espectro eletromagnético, nem sempre permitem a identificação dos cursos d'água. Nestas imagens a identificação da drenagem, tanto principal como secundária, é feita pela presença da mata galeria.

Assim, os cursos d'água aparecem de forma bem definida em trechos onde há mata galeria pois ela apresenta um grande contraste com a vegetação adjacente. Em áreas de vegetação muito densa ou muito alterada fica difícil a identificação da rede de drenagem, que é mais carada por estes dois fatores.

Em alguns trechos, quando o rio corre por vales em garganta e a vegetação não é densa, pode-se inferir o traçado do seu curso pela configuração do vale.

A possibilidade de analisar imagens do sistema sensor MSS, na faixa do infravermelho, permitiu a identificação dos rios em áreas de vegetação muito densa, pelo alto contraste entre a camada de água (cinza-escuro) e a área adjacente ao rio (cinza-claro).

A Tabela 1 apresenta as características gerais das bacias hidrográficas da área.

3.2 - CARACTERÍSTICAS GEOLOGICAS DA ÁREA:

A área de estudo caracteriza-se por uma extensa região de terrenos predominantemente sedimentares, pertencentes à Bacia Sedimentar do Paraná. As sequências sedimentares desta bacia, que tiveram o seu caráter transgressivo acentuado na era Mesozóica, são representados por diversas formas, dispostasumas sobre as outras, conforme a coluna estratigráfica da Tabela 2. Esta coluna foi obtida do mapa geológico do Estado do Mato Grosso do Sul (CODESUL, 1980).

Pela análise dos perfis geológicos geomorfológicos constatou-se que a disposição das unidades litoestratigráficas está intimamente relacionada ao arranjo do relevo, havendo uma correspondência entre unidades litoestratigráficas e os grandes conjuntos de relevo. A Figura 3 apresenta a localização destes perfis na área de estudo. A Figura 4, perfil no 2, dá um exemplo das disposições das unidades geológicas.

3.3 - COMPARTIMENTAÇÃO MORFOESTRUTURAL DA ÁREA DE ESTUDO

De acordo com Almeida (1956), o planalto basáltico da Bacia do Paraná apresenta-se morfológicamente como uma sucessão de grandes plataformas estruturais de relevo suavizado, inclinadas principalmente para norte. Na porção norte deste planalto, as lavas acham-se parcialmente recobertas por litologias sedimentares Mesozóicas. Em quase toda sua periferia, o planalto fica em elevadas escarpas que se constituem em frentes de cuestas, voltadas para as bordas desta bacia. Os derrames de lavas basálticas foram importante elemento estrutural desta bacia, atuando como mantenedores dos relevos plântanos. Os terrenos Paleozóicos são limitados a oeste pela Planicie do Pantanal.

Durante a análise visual das imagens LANDSAT, constatou-se que as imagens RBV, devido à sua maior resolução espacial, são úteis para a caracterização de certas formas de relevo, em especial as escarpas e patamares erosivos. Em compensação, em áreas de cobertura vegetal muito densa, as imagens MSS (canal 7) foram mais úteis para caracterização das formas de relevo.

Durante as etapas de análise das imagens do LANDSAT e do trabalho de campo, constatou-se que a área de estudo apresentava três grandes compartimentos morfoestruturais que, apesar de apresentarem relevos semelhantes, são distintos pelas diferenças altimétricas, sendo separáveis nas imagens (Figura 5).
<table>
<thead>
<tr>
<th>Bacia Hidrográfica</th>
<th>Gênese do Rio Principal</th>
<th>Principais Litoalogias</th>
<th>Afluentes</th>
<th>Gênese dos Afluentes</th>
<th>Padrão de Drenagem</th>
<th>Características Gerais</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquidauana</td>
<td>Subsequente</td>
<td>Formação Botucatu, Serra Geral e Aquidauana</td>
<td>Margem esquerda</td>
<td>Obsequentes</td>
<td>Paralelo e sub-paralelo nos altos cursos</td>
<td>O rio Aquidauana nasce na serra de Maracaju a 700m, de altitude. Tem direção NE-SW, apresentando um desnível de 300m desde a nascente até o limite da área de estudo. Os rios apresentam forte controle estrutural, devido a falhamentos e fraturas. Estes planos de fraqueza estão mas caras pela cobertura aluvial holocênicas e atuais. Os rios de maior porte apresentam planícies aluviais extensas, por onde se encontram. Os altos cursos dos rios da margem esquerda nasce na serra de Maracaju e descem por uma escarpa (Formação Serra Geral) formando muitas vezes vales em garganta. Os rios da margem direita entram profundamente as litologias sedimentares, formando vales estreitos.</td>
</tr>
<tr>
<td>Coxiú</td>
<td>No seu trecho inicial é obsequente, passando depois para subsequente</td>
<td>Sedimentos in consolidados do terciário; formação Serra Geral e Botucatu</td>
<td>Margem esquerda</td>
<td>Obsequentes</td>
<td>Subparalelo</td>
<td>O rio Coxiú localiza-se na porção NE da área de estudo e percorre uma extensão de 60km. Nasce na serra de Maracaju, numa altitude acima de 700m, com direção NW-SE, infletindo depois para S-W, onde apresenta um desnível de 200m, mudando de poe sua curso para S-N. Apresenta linearidade indicativa de um controle estrutural acentuado. Este rio, ao descer a escarpa da serra, entrelaça profundamente as rochas da Formação Serra Geral, formando um vale em garganta.</td>
</tr>
<tr>
<td>Negro</td>
<td>Inicialmente é subsequente e depois passa a ser obsequente</td>
<td>Formações Aquidauana, Ponta Grossa, Furnas e Pantanal</td>
<td>Margem esquerda</td>
<td>Resequentes</td>
<td>Subdendrício</td>
<td>O rio Negro nasce no sul da área de estudo, numa altitude acima de 400m e percorre uma extensão de 75km, apresentando um desnível de 250m. Tem direção S-N, para depois infletir para E-W. Os rios desta bacia apresentam uma certa linearidade no seu curso, sugerindo controle estrutural (exemplos, o rio Negro e o córrego do Acampamento).</td>
</tr>
<tr>
<td>Taboco</td>
<td>Subsequente</td>
<td>Aquidauana</td>
<td>Margem esquerda</td>
<td>Obsequentes</td>
<td>Paralelo</td>
<td>O rio Taboco nasce numa altitude de 400m, escocando no sentido N-S, contrário ao sentido do rio Negro. Percorre uma extensão de 35km, apresentando um desnível de 100m. Os rios desta bacia apresentam um certo controle estrutural, sendo que a margem esquerda bastante escahados. O rio Taboco corre por uma planície aluvial, apresentando meandros.</td>
</tr>
<tr>
<td>ERAS</td>
<td>PERÍODOS</td>
<td>FORMAÇÕES</td>
<td>LITOLOGIAS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------------------------------------------------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quaternário</td>
<td>Qp</td>
<td>Sedimentos aluvionares.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CENOZOICO</td>
<td>1,8 m.a.</td>
<td>Tq/Tch</td>
<td>Sedimentos inconsistency, com leitos de seixos basais.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terciário</td>
<td>65 m.a.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cretáceo</td>
<td>141 m.a.</td>
<td>JKsg</td>
<td>Arenitos finos a médios ortoquartizíticos. Sequência de derrames basálticos com intercalações de arenitos eólicos.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jurássico</td>
<td>195 m.a.</td>
<td>TRKb</td>
<td>Arenitos de granulação fina e grossa; depósito de origem eólica.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triássico</td>
<td>230 m.a.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permiano</td>
<td>280 m.a.</td>
<td>Pca</td>
<td>Sequência sediumentária essencialmente arenosa.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbonífero</td>
<td>345 m.a.</td>
<td>DPg</td>
<td>Siltitos folhelhos e arenitos finos.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Devoniano</td>
<td>570 m.a.</td>
<td>pEACH</td>
<td>Mármore calcítico e dolomítico, metamergados, filitos, xístos e quartzíticos.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROTERÓZICO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pré-Cambiano A ou superior</td>
<td>1000 m.a.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 3 - Mapa geológico da área de estudo.
Fig. 4 - Perfil geológico - geomorfológico.
O critério altimétrico utilizado neste trabalho foi de grande utilidade para estabelecer as unidades morfoestruturais, pois dela a sequência sedimentar da área não foi debrada, sendo suavemente inclinada das bordas da bacia para o centro, ou seja, de W para E. Assim uma mudança altimétrica corresponde frequentemente a uma mudança de unidade litoestratigráfica que, por sua vez, pode corresponder a uma mudança de relevo.

A figura 6 apresenta o mapa de unidades morfoestruturais da área de estudo.

A descrição destas unidades será feita de acordo com os seus níveis altimétricos, partindo-se do mais elevado para o de menor altitude.

1) Planalto da serra de Maracaju - 19 nível

Altitude que varia entre 600 e 800m, au mentando no sentido S-N. É constituído por terrenos sedimentares da formação Caluá e por coberturas detriticas do terciário. Função como dispersor de águas dos rios Negro, Coxim e Aquidauana e como divisor de águas dos rios Paraná e Paraguai. Caracteriza-se por topos planos, interflúvios amplos, vertentes longas e convexas. Os canais apresentam pouca profundidade, densidade hidrográfica pequena, cursos longos e vales amplos. A oeste deste planalto observa-se uma linha de cuestas, cuja escarpa está sendo intensamente erodida pelas cabeceiras dos afluentes dos rios Aquidauana e Negro. Alguns rios cortam epicínicamente as formações Paleozóicas e Mesozóicas, formando cachoeiras e gargantas, com desniveis de mais de 100m. Esta escarpa apresenta-se em alguns trechos patamares erosivos, em forma de trapp. Sua presença está ligada à erosão diferencial sofrida pelas rochas básicas intercaladas com arenitos. Observa-se também, na frente da escarpa, a presença de relevos residuais em diferentes altitudes.

2) Planalto do curso superior do rio Aquidauana - 29 nível

Suas altitudes variam entre 300 e 600m, crescendo no sentido SW-NE. É constituído por terrenos da formação Botucatu. Caracteriza-se por topos planos, interflúvios amplos, vertentes longas e convexas. Os canais de drena gem apresentam pouca profundidade e os cursos são longos. O rio Aquidauana e alguns de seus afluentes apresentam uma larga planicie aluvial, associada a baixas colinas, com vertentes côncavo-convexas. Este planalto é limitado a W por uma escarpa de cuesta, onde se observam patamares residuais. Esta escarpa é entalhada pelas cabeceiras dos afluentes do rio Negro. Em frente à escarpa da cuesta, na porção SW da área, há relevos residuais.

3) Planalto do alto curso dos rios Negro e Taboco - 39 nível

Sua altitude varia de 200 a 500m. É constituído por terrenos sedimentares das forma ções Aquidauana, Ponta Grossa e Furnas. É separado da depressão do Pantanal por uma cuesta que manda a um ramo da serra de Maracaju. A frente desta cuesta apresenta-se muito escarpada, com conos de colúvio no sopé, sendo entalhada pelos rios obsequentes que fluem para o Pantanal. Esta escarpa é manda por rochas do grupo Cuiabá, que é constituída por rochas mais resistentes ao desgaste erosivo, não apre sentando patamares erosivos. O relevo deste planalto se caracteriza pela intercalação de relevos colinosos e de interflúvios tabulares. Os rios Taboco e Negro apresentam planícies aluviais, de extensões inferiores a do rio Aquidauana.

4. CONCLUSÕES

A término deste trabalho pôde-se chegar às seguintes conclusões:

- A metodologia de análise morfoestrutural proposta por Bashenina e Treshchov permite obter uma visão geral das unidades morfoestruturais de uma área, mesmo em escala regional como a utilizada neste trabalho;
- esta metodologia, apesar de ter sido desenvolvida para fotografias aéreas, é aplicável às imagens dos sistemas sensores (MSS e RBV) do satélite LANDSAT, desde que se leve em consideração a diferença de escala entre os diferentes tipos de dados;
- a utilização de imagens do sistema sensor RBV, para mapeamento geomorfológico de uma dada área, é perfeitamente viável, desde que ela não seja recoberta por uma cobertura vegetal muito densa;
- o uso concomitante de imagens RBV com imagens do canal 7 do sistema MSS, facilita o traçado das formas de relevo em áreas de cobertura vegetal muito densa.

6. REFERÊNCIAS BIBLIOGRÁFICAS


