UTILIZAÇÃO DE IMAGENS LANDSAT TM NO INVENTÁRIO HIDROENERGÉTICO DA BACIA DO RIO PARAÍBA DO SUL

Augusto Paiva Filho
THEMAG ENGENHARIA LTDA.
Caixa Postal 1449, 01415-São Paulo-SP-Brasil

Carlos Bianco
THEMAG ENGENHARIA LTDA.
Caixa Postal 1449, 01415-São Paulo-SP-Brasil

Tania Maria Sausen
Instituto de Pesquisas Espaciais
Ministério da Ciência e Tecnologia
Caixa Postal 515, 12201-São José dos Campos
São Paulo-SP-Brasil

RESUMO

A THEMAG Engenharia Ltda., em cumprimento a um contrato firmado com FURNAS Centrais Elétricas S.A., desenvolveu os estudos de inventário na Sub-Bacia II, da Bacia Hidrográfica do rio Paraíba do Sul. Estes estudos visam estabelecer no rio Paraíba do Sul, no rio Pomba e alguns afluentes, notadamente os rios São Manoel, Xopotó e Novo, uma alternativa adequada de divisão de quedas, para o aproveitamento do potencial hidrelétrico destes rios.

Nos estudos de usos e ocupação do solo relativos à área a ser inundada pelos reservatórios das barragens projetadas, incluindo uma extensão lateral do perímetro de cada reserva tório de largura arbitrária considerada como sendo de influência, ou tendo como limites o divisor de águas, foram utilizados produtos digitais TM.

ABSTRACT

THEMAG Engenharia Ltda., satisfying a Contract settled with FURNAS Centrais Elétricas S.A. developed a power study in an inventory level in the Paraíba Basin, Sub-Basin II. This study aimed to establish in the Paraíba do Sul River and some affluents, mainly the São Manoel, Xopoto and Novo Rivers, suitable alternatives for power plants scheme in a most suitable profile.

Regarding the land use studies carried out over the planned reservoirs and their surrounding areas TM digital products were used. The CCT’S TM Quadrant Digital Products with desired spectral bands selected for such purpose was useful to identify and survey such a land use categories:

1. Urban Areas
2. Agriculture Areas
3. Forest Areas
4. Grazing Areas
5. Drainage.

1. INTRODUÇÃO

Os estudos de uso e ocupação do solo visaram a identificação e o levantamento do seguinte elenco de categorias de uso do solo:

1. Áreas urbanas ou construídas;
2. Lavouras ou culturas de várzea;
3. Matas naturais, reflorestadas ou regeneradas;
4. Campo ou pasto;
5. Drenagem (água).

A escolha dessas grandes classes prendeu-se a dois aspectos fundamentais:

- O primeiro, função do produto de sensoriamento utilizado: ampliações até uma escala aproximada 1:50.000 a partir de uma imagem de satélite cuja escala original é 1:2.000.000, ocasionando perda de nitidez; imageramento de regiões de relevo acidentado e montanhoso, com zonas de sombra disseminadas, com enfraquecimento das reflexões das ondas eletromagnéticas; respostas espectrais bastante próximas de certas classes tais como campo natural seco e pasto seco.

- O segundo, função do objetivo deste trabalho, que pretende obter informações a nível de inventário, que não exige maior aprofundamento, mas basicamente identificar essas grandes classes de uso e ocupação permitindo identificar (qualificar e quantificar) as grandes classes no nível de precisão de sejável.

A partir da comparação dos dados obtidos por este processo com as informações censitárias, os mapas pedológicos, os demais dados de infra-estrutura e análises desenvolvidas foi possível obter-se a avaliação dos prováveis efeitos do processo de implantação dos aproveitamentos sobre a organização espacial e socio-econômica regional.

2. LOCALIZAÇÃO DA ÁREA ESTUDADA

A bacia do rio Paraíba do Sul, abrangendo uma área total de 55.400 km², localiza-se entre os paralelos 20°26' e 23°38' e os meridianos 41° e 46°30', servindo-se na região Sudeste. Limita-se ao Norte pelo divisor da Serra da Mantiqueira, a Leste pelas Serras dos Orgãos e do Mar, ao Sul pela Serra do Mar e a Oeste, por diversas ramificações dos maciços pertencentes à Serra do Mar e da Mantiqueira.

A Companhia Furnas Centrais Elétricas S.A., de posses da concessão para estudos hidroenergéticos e instalações de usinas hidrelétricas na bacia hidrográfica do Paraíba do Sul, subdividiu a referida bacia em três sub-bacias. A Sub-Bacia II, com uma área aproximada de 12.450 km², distribui-se entre os estados do Rio de Janeiro e Minas Gerais.

3. OBJETIVO DOS ESTUDOS

Os estudos de Inventário Hidroenergético fazem parte do conjunto de trabalhos destinados à utilização dos recursos hidricos como fonte de energia renovável tão necessários ao desenvolvimento nacional e promoção da qualidade da vida do homem. Após a "Estimativa do Potencial Hidrelétrico", que é a primeira avaliação do potencial, do número de locais barráveis e do custo do aproveitamento desse potencial, desenvolve-se o Inventário.

O Inventário deve estar a determinação do potencial energético da bacia, está prevendo a melhor divisão da queda e estimativa do custo de cada aproveitamento. Nesses estudos um dos fatores mais importantes é a avaliação dos impactos causados pelos barramentos pretendidos, tanto a nível de custos quanto nos aspectos ambientais, quer socio-econômicos, quer físicos.

A evolução dos recursos de sensoriamento remoto observa-se nos últimos tempos colocando à disposição imagens de satélite que cobrem cíclicamente a superfície da Terra, fornecendo uma gama muito intensa de informações atualizadas a respeito do uso e ocupação do solo.

Para avaliação das transformações ocorridas, pode-se recorrer a análises comparativas com imagens armazenadas, datadas de alguns anos atrás, do ponto de partida do tempo pretendido.

O objetivo do estudo de senvolvimento foi avaliar, no momento de sua utilização, a distribuição dos vários usos existentes, tanto quantitativamente como qualitativamente para permitir o estudo de impactos nos pontos de vista físicos, social
LOCALIZAÇÃO DA ÁREA ESTUDADA
LOCALIZAÇÃO DOS EIXOS
DOS BARRAMENTOS

FIG. 2
e econômico na região, da criação de reservatórios que inun
dam parcelas significativas de terras, e de custos envolvidos
para o empreendimento, assim como, para determinação das ações
a serem desenvolvidas para minimização dos efeitos negativos e
maximização dos benefícios oriundos dos novos recursos que se
rão colocados à disposição da região: perda de terras versus
água em cota elevada e energia disponível.

Os trabalhos desenvolvidos permitiram o conhecimento
atual da distribuição e quantificação das áreas urbanas ou
construções, lavouras, matas, campos ou pastos e linhas de drenag
em, e consequentemente, da avaliação das parcelas a serem ar
gadas nas várias alternativas analisadas. O estudo assim refor
cando foi de grande auxílio na escolha dessas alternativas per
mitindo o equacionamento equil
brado das ações propostas.

4. METODOLOGIA

4.1 Escolha do Produto TM

Primeiramente, procedeu-se a escolha dos produtos digitais
TM, fitas CCT contendo informações correspondentes às bandas
1, 2, 3 e 4, das cenas ou quadras de cena que recobrissem a
região estudada. Desta forma foram selecionadas para a Sub-
Bacia II as seguintes fitas CCT: ORB. 217/PT.75 - Q.A; ORB. 217/
PT.75 - Q.B; ORB. 217/PT.75 -Q.D; ORB. 216/PT.75 - Q.C.

4.2 Separação dos Módulos

De posse de tais produtos, passou-se à identificação dos locais de barramento e, conse
quentemente, da área dos reser
vatórios no vídeo do computador GE-I-100 do INPE. Esta identifi
cação foi feita por analogia com folhas topográficas na escala
1:50.000, nelas contidas tô
das as informações necessárias.
Cada área delimitada, engloban
do, o eixo de barramento e o res
pectivo reservatório, foi deno
minado módulo.

Uma vez situados os eixos de cada barramento e reservatorio no vídeo do I-100, procedeu-se ao ajuste da escala para
1:50.000, e à tomada das coordenadas correspondentes a cada mó
dulo visualizado.

Antes de tal procedimento, no entanto, procurou-se corrigir o fator circunferência da
terra ou "skew".

Os módulos assim determinados foram os seguintes, com as respectivas coordenadas e de
nominados segundo o sitio de bar
ramento.

A - Imagem 217.75D
THE 01 - Paquequer
X1 - 1192; Y1 - 945
X2 - 1703; Y2 - 1456

THE 02 - São Sebastião do Paraíba / Complementar
X1 - 1736; Y1 - 707
X2 - 1887; Y2 - 1218

THE 03 - São Sebastião do Paraíba / Complementar
X1 - 1787; Y1 - 518
X2 - 2298; Y2 - 1029

THE 04 - Simplicio
X1 - 633; Y1 - 1276
X2 - 1144; Y2 - 1787

B - Imagem 217.75B
THE 06 - Bonito
X1 - 2127; Y1 - 1680
X2 - 2638; Y2 - 2191

THE 07 - Itapiruçu
X1 - 1783; Y1 - 1524
X2 - 2294; Y2 - 2035

THE 08 - Itapiruçu / Complementar
X1 - 1531; Y1 - 1569
X2 - 2042; Y2 - 2080

THE 09 - Cataguases / Monte Cristo
X1 - 411; Y1 - 1506
X2 - 922; Y2 - 2017

THE 10 - Xerotó
X1 - 164; Y1 - 1043
X2 - 675; Y2 - 1554

THE 22 - Monte Cristo / Complementar
X1 - 225; Y1 - 1230
X2 - 736; Y2 - 1741

C - Imagem 217.75A
THE 11 - Ituerê
X1 - 2268; Y1 - 1547
X2 - 2779; Y2 - 2058

THE 12 - Ituerê / Complementar
X1 - 1852; Y1 - 1431
X2 - 2363; Y2 - 1942

THE 13 - Ituerê / Complementar
X1 - 1865; Y1 - 1210
X2 - 2376; Y2 - 1721

THE 14 - Gonçalves
X1 - 2200; Y1 - 1171
X2 - 2711; Y2 - 1682
THE 15 - Gonçalves/Complementar
X1 - 2146; Y1 - 1680
X2 - 2657; Y2 - 1230
D - Imagem 216.75C
THE 16 - Itaocara
X1 - 855; Y1 - 863
X2 - 1366; Y2 - 1374
THE 17 - Itaocara/Complementar
X1 - 746; Y1 - 900
X2 - 1257; Y2 - 1411
THE 18 - Itaocara/Complementar
X1 - 505; Y1 - 1047
X2 - 1016; Y2 - 1558
THE 19 - Aperibé
X1 - 966; Y1 - 433
X2 - 1477; Y2 - 944
E - Imagem 217.75 Centro
THE 20 - Araci
X1 - 1573; Y1 - 236
X2 - 2084; Y2 - 747
THE 21 - Araci/Complementar
X1 - 1348; Y1 - 237
X2 - 1859; Y2 - 748

4.3 Fotografiação dos Módulos

Este procedimento consistiu em fotografar o vídeo do computador I-100 e o módulo irradiado utilizando filmo de sensibilidade ISO-100, câmera fotográfica convencional adaptada a um tripé, usando velocidade baixa para o obturador e tamanho dos devidos cuidados com a intensidade de luz.

A norma para o realçamento aéreo e fotografiação dos módulos foi a seguinte:
- Correção radiométrica para corrigir o bandeamento incidente às imagens LANDSAT.
- Realçamento por meio do programa de realce de contraste (Contrast Stretch).

- Uma foto combinando os seguintes canais:
 - canal 2 (filtro azul)
 - canal 3 (filtro verde)
 - canal 4 (filtro vermelho)

- Uma foto combinando os seguintes canais:
 - canal 1 (filtro azul)
 - canal 3 (filtro verde)
 - canal 4 (filtro vermelho)

- Uma foto só do canal 4.

4.3.1 Interpretação Visual dos Módulos

Uma vez identificados e fotografados os módulos correspondentes às áreas dos reservatórios, foram elaborados ampliações fotográficas no papel matê, de dimensões 30 x 40 cm, de maneira a reproduzir o formato do vídeo do computador I-100, de dimensões 30 x 28,5 cm com imagem na escala aproximada 1:50.000.

De posse de tais ampliações fotográficas, geralmente duas para cada módulo na combinação dos canais 1, 3 e 4 e 1, 3 e 4 (em falsa cor), procedeu-se à interpretação visual das regiões de interesse, no intuito de se separar as diferentes classes de uso e ocupação do solo.

O procedimento, na realização desta etapa final dos trabalhos, foi a análise visual das fotografias em falsa cor.

Em fotografias desta natureza, as diferentes classes e tipuladas no mapeamento respondem segundo uma cor característica. O alvo "água" dá resposta em cor preta, o alvo "pasto", de cor verde, dá resposta em azul ou verde azulado, o alvo "solo" de cor vermelha, responde em verde, o alvo "mata", densa, reflectida na infra-vermelha é intensa, responde em vermelho vivo.

Nós trabalhos de identificação das classes por fotointerpretação visual, no entanto, levou-se em consideração fato reais de que, no terreno, tais alvos sofrem interações. De posse das fotos interpretadas, de fotos aéreas de data anterior (aproximadamente 15 anos) foi realizada uma determinação mais precisa dessas interações. É importante salientar que a viagem foi realizada em estação equivalente a dos imagens escolhidas, ou seja, 1 (hum) ano após, também em época de estiagem.

Decorrente do exposto, ob servou-se que para as classes "água", que contém partículas de argila de cor vermelha em sus pensão, "pasto seco" que não esconde o solo vermelho, "pasto de grama mais verdes" com
maior densidade de clorofila, a "cultura de gramíneas em terreno alagado", o "solo úmido arado", a "rocha aflorante misturada com solo vermelho", a "matas densas" ao lado de "mata desfolhada" e "capoeirões", etc., as respostas espectrais sofrem tanto bém interações, resultando em nuances misturadas ou esmaecidas. Decorrente do exposto, alvos delineados na fotointerpretação estão representados da seguinte forma, nas fotografias em falsa cor a partir das duas combinações de canais, levando-se em consideração que a diferença entre estas combinações se caracteriza por uma densidade de maior de tons azulados na combinação dos canais 1, 3 e 4:

ÁGUA: em preto quando pura, em preto esverdeado quando com argila em suspensão, em preto azulado a branco azulado quan
do reflete o sedimento do fundo.

PASTO: em azul a azul esverdeado quando seco, apresentando nuances cor-de-rosa quando mais verde. O azul esverdeado representa maiores exposições de solo vermelho.

CULTURAS DE VARZEAS: de cor marinho quando exposto ter
ta arada em terreno molhado, ou quando com restes de culturas (arroz). Cor-de-rosa quando a cultura da gramínea é jovem com folhas verdes. Verde amarelada quando a terra preparada tem cor vermelha. Branco-azulado quando a terra preparada tem cor clara.

MATAR: em vermelho vivo quando denso, ou em tons levo
temente rosaeos quando na forma de capoeirões ou mata regenerada.

ROCHA AFLORANTE: em tons esbranquiçados, misturados com o verde azulado do pasto ou com o rosado dos capoeirões esparsos.

AGLomerados urbanos: em branco azulado, com tons azuis marinhos refletindo calçamentos ou asfalto.

Baseado nestas informações a respeito das respostas em colorido para cada alvo, as diferentes classes de uso e ocupação do solo foram identificadas e delineadas em "overlay".

Uma vez elaborados mapas preliminares, estes foram compara
dos com informações obtidas da fotointerpretação sobre fó
tos aéreos convencionais em branco-e-preto. Esta comparação per
tiu um maior ajuste na deli
neação das classes, uma vez que em quinze anos, desde a época da tomada das fotos aéreos mais antigos, a região sofreu muito pouca modificação antrópica. Es
ta comparação foi feita mediane
te o uso de aparelho ótico equa
lizador de escalas.

Para cada módulo interpre
tado, foram elaborados dois "overlays" finais, um con
tendo informações sobre a dís
tribuição das matas naturais, e outro contendo a delineação das áreas de cultivo em várzeas. Sur
pondese-se os dois "overlays", o restante da área é correspondente à região em que predomina a classe campo ou pasto.

Estes "overlays" mostram ainda a delineação de cada re
servatório, e do divisor de águas da bacia, ou a delimitação de uma área considerada como sendo influente ao reservatório. O "overlay" contendo a classe "ma
ta" mostra ainda o traçado da drenagem secundária.

As áreas das classes as sim determinadas foram planime
tradas para a obtenção dos dados quantitativos a cada una de
ds. Esses valores foram aper
sentados no relatório de estu
dos finais de inventário, encá
minhados à FURNAS Centrais Elé
tricas S.A.

4.4 Classificação Temática

Como uma tentativa de mos
trar a viabilidade de utilização de classificação temática, para mapeamento de uso do solo da área de estudo, fiz-se uma classi
ciação das áreas referentes aos módulos 16 (Itaocara), 17 (Ita
cara /complementar), 18 (Itaocara complementar), através do Siste
ma MaxVer.

Este sistema, destina-se a classificação ponto a ponto de imagens multispectrais, uti
lizando o critério de máxima ve
rossimilhança, segundo classes escolhidas iterativamente pelo usuário.

Para esta classificação foram escolhidas quatro áreas de treinamento distintas, a saber: águas, mata, pasto e área de var
zea.
Os parâmetros do treinamento para o módulo 17 são os críticos a seguir:
Canais utilizados - 2 3 4
Nº de dimensões - 3
Nº de classes - 4
Nº de amostras - 11
Classes:
1. água
2. mata
3. pasto
4. varzea
Novos canais - 2 3 4

Parâmetros da classe 1-água
Nº de pontos - 16
Média - 57.13; 84.13; 73.44
Matriz de covariância
2.98 -2.27 -3.43
-2.27 18.48 7.07
-3.43 7.07 8.50

Parâmetros da classe 2-mata
Nº de pontos - 72
Média - 50.36; 64.64; 52.56
Matriz de covariância
3.45 3.66 7.77
3.66 20.87 32.41
7.77 32.41 75.55

Parâmetros da classe 3-pasto
Nº de pontos - 108
Média - 65.94; 99.60; 126.09
Matriz de covariância
12.54 22.92 29.53
22.92 61.44 85.68

Parâmetros da classe 4- varzea
Nº de pontos - 72
Média - 64.47; 98.60; 105.94
Matriz de covariância
28.25 49.68 69.78
49.68 98.77 132.87
69.78 132.87 199.38

A figura 3 apresenta a matriz de classificação deste mês de trabalho. Esta matriz fornece uma primeira avaliação da separabilidade entre as classes adquiridas no treinamento, ou de amostras de áreas testes. A matriz permite verificar entre quais classes estão havendo interferência e quais estão separadas.

No caso de classes cujas distribuições se sobrepõem (interferência), isso pode ser devido à imprecisão na aquisição das amostras, ou porque as classes são realmente semelhantes.

Pela matriz de classificação apresentada na figura 3, pode-se observar que a classe água foi a que se apresentou com maior separabilidade (100%) e a classe varzea foi a que apresentou maior interferência (87.5%). Isto se deve ao fato, de que a água, neste módulo, apresentou um grande contraste em relação a todos os outros alvos, sendo o mais fácil de ser definido.

MATRIZ DE CLASSIFICAÇÃO

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ÁGUA</td>
<td>0.0</td>
<td>100.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MATA</td>
<td>0.0</td>
<td>0.0</td>
<td>97.2</td>
<td>0.0</td>
</tr>
<tr>
<td>PASTO</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>92.6</td>
</tr>
<tr>
<td>VARZEA</td>
<td>0.0</td>
<td>1.4</td>
<td>0.0</td>
<td>11.1</td>
</tr>
</tbody>
</table>

Desempenho médio DM - 92.9%
Abstenção média AM - 0.5%
Confusão média CM - 7.1%

Figura 3 - Matriz de classificação das áreas testes selecionadas.

Já a classe varzea apresentou sobreposições com as classes pasto (7.4%) e mata (2.8%). Isto ocorre, porque nas áreas de varzea, há a presença de vegetação de gramínea e/ou mata ciliar, favorecendo assim a interferência na classificação destas três classes.

Durante os trabalhos de campo, foi feita uma verificação desta classificação realizada no Sistema L-100. Nesta ocasião, foi possível constatar que as classes obtidas correspondiam ao tipo de cobertura vegetal observado no campo.

Foi possível constatar que a classe pasto, ocupa a maior extensão em área, correspondendo às áreas de vertentes e encostas. As áreas de mata, estão localizadas em sua maior parte nos topos dos morros.

A classe água, restringe-se basicamente a lâmina d'água do rio Paraíba do Sul. Isto ocorre, porque apenas este rio, na área, tem largura compatível com a resolução do satélite (30 m). Os outros rios, são de porte muito pequeno, não sendo possível classificá-los.

A classe varzea ocorre em sua maior parte, na varzea do rio Paraíba, devido a sua maior extensão.

Provavelmente, as áreas desta classe, que aparecem em direção as encostas, são as que
favorecem a interferência com as classes pasto e mata.

5. Conclusões

O desenvolvimento dos trabalhos, através da metodologia adotada mostrou alguns pontos importantes, que em outros trabalhos deverão ser bastante cuidados:

A) As imagens TM/LANDSAT foram bastante adequadas ao objetivo pretendido e são poderosas auxiliares nos estudos de planejamento integrado, em especial nos de bacias hidrográficas, tanto pela qualidade do produto quanto na quantidade de informações obtidas, além de permitir estudos comparativos ao longo do tempo.

B) O relevo montanhoso e acidentado da região estudada, com zonas de sombra disseminadas, dificultou a análise realizada e o detalhamento mais preciso de alguns usos, exigindo um aperfeiçoamento através de observações locais. As regiões mais planas se mostraram mais adequadas ao uso de sensoriamento remoto com a metodologia adotada.

C) A utilização de imagens de uma só época do ano (estagiagem) reduziu as análises possíveis e as projeções desenvolvidas quanto ao uso e ocupação do solo. A utilização simultânea de imagens na estação chuvosa auxiliaria nos estudos definindo mais claramente as várias classes de uso e ocupação.

D) A verificação de campo foi extremamente valiosa e não deve ser dispensada em função das inferências detectadas. Permitem inclusive uma visualização bastante objetiva dos recursos do instrumento e sua correta utilização.

E) Neste trabalho foi possível verificar-se que a classificação temática, por meio do sistema MAXVER, é viável na área de estudo. Esta, devido ao relevo acidentado e a própria ação antrópica existente na área de estudo, apresentou algumas interferências entre as classes, porém ainda com uma alta porcentagem de acerto. Provavelmente, em áreas de relevos mais planos tais como chapadões e planícies

das diferentes regiões do Brasil, este tipo de classificação apresente melhores resultados.

6. Bibliografia

RIBEIRO, E.A.; MITSUO II, F.A.; MOREIRA, J.C.; DUTRA, L.V. Manual de usuário dos sistemas de tratamento de imagens digitais - Versão 1; INPE, S. S. Campos, SP, out./82.