Sensoriamento remoto no mapeamento digital da fertilidade do solo: solucionando um grande inconveniente em agricultura de precisão

Leonardo Ramírez-López lrlopez@esalq.usp.br

José Alexandre M. Demattê jamdtmat@esalq.usp.br

Fabrício da Silva Terra fsterra@esalq.usp.br

Marco A. Bortoletto mamborto@esalq.usp.br

Departamento de Ciência do Solo, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" USP/ESALQ Av. Pádua Dias, 11 CP 9 CEP 13418-900 Piracicaba - SP

Abstract. Precision agriculture requires high soil sampling density to assess the soil spatial variability and therefore the cost for asses this variability is significantly high. In this way, the aim of this study was to demonstrate that with a small number of soil samples (with low costs) statistical models for the quantification of soil attributes in a large number of foil samples based on the soil spectral reflectance can be obtained with suitable accuracy for the description of the spatial variability of attributes related to the soil fertility. In the study area of 473 ha 900 soil samples were collected in two depths. A soil analysis was carried out and were obtained Ca, Mg, K and CIC, was also calculated the base sum and soil textural fractions were also determined. For each soil samples a spectral reflectance was obtained. Models for the quantification of soil attributes were calibrated by partial least squares regression (PLS). These models were calibrated with three different quantity of soil samples, for the selection of these samples was used two different methods. The performance each model was evaluated by cross validation. Finally these models were applied to all spectral data and was obtained the predicted soil attribute values in each soil sample. The predicted soil attributes (by remote sensing) and the soil attributes form conventional soil analysis were mapped using geoestatistica methods. This study demonstrates that the remote sensing can be solve a great problem in precision agriculture and digital soil mapping.

Palavras chave: espectroscopia de solos, quimiometría, variabilidade espacial, amostragem estratificada e em grade, soil spectroscopy, chemometrics, spacial variability, stratified sampling.

1. Introdução

A variabilidade espacial dos atributos é uma característica própria dos solos e o seu mapeamento é de grande utilidade no planejamento das atividades agrícolas e na otimização de recursos destinados a melhoria dessas características. Um dos inconvenientes que se têm na adequada descrição da variabilidade espacial de atributos do solo está relacionado com o número de amostras ótimo que devem ser obtidas para conseguir representar apropriadamente essa variabilidade. A densidade de amostragem para essas descrições é geralmente alta e por tanto o custo é consideravelmente alto em relação aos custos totais destas descrições. Analises econômicos tomando como referencia alguns casos a nível mundial indicam que os custos das analises de solos são bastante altos como para serem usadas de forma econômica na implementação de praticas de agricultura de precisão relacionadas com o manejo do solo (Viscarra Rossel et al., 1998).

As técnicas de espectroscopia de reflectância apresentam grande sensibilidade para medir fases orgânicas e inorgânicas do solo, fazendo com que seu uso nas ciências agrícolas e ambientais seja particularmente relevante. Por ser um método não destrutivo, a avaliação dos atributos do solo por meio da sua resposta espectral pode apresentar resultados mais precisos que as técnicas convencionais as quais alteram o equilíbrio entre as fases do solo e, de fato, podem dificultar a interpretação dos resultados.

Com técnicas mais precisas e rápidas, que possam cobrir extensas áreas, o mapeamento da variabilidade espacial de atributos poderá ser mais preciso, permitindo melhorar a eficiência de manejo. A natureza das análises de reflectância espectral sugere sua utilização como suporte de decisões em agricultura de precisão na avaliação de grandes áreas utilizando uma maior densidade de amostras (Odlare et al., 2005).

O objetivo do trabalho foi demonstrar que com poucas amostras de solo e uma menor quantidade de investimento econômico podem-se obter modelos estatísticos locais de estimativa de atributos do solo baseados na reflectancia espectral deste para serem usados num grande número de amostras com uma acurácia adequada para desenvolver mapas de variabilidade espacial da fertilidade detalhados que possam ser usados em agricultura de precisão. Por outra parte o trabalho vista comparar duas metodologias de seleção de amostras que possam servir como base para as calibrações deste modelos.

2. Materiais E Métodos

A área de estudo localiza-se a sudoeste do Estado de São Paulo, na região de Barra Bonita e possui uma superfície de 473 ha cultivadas com cana-de-açúcar em altitudes variando entre 550 e 710 m. No plano de amostragem foi utilizada uma grade regular de 100 x 100 m, perfazendo um total de 473 pontos. Esses foram numerados, georreferenciados e amostrados com trado nas profundidades 0-0,20 m (profundidade A) e 0,80-1,00 m (profundidade B), totalizando 956 amostras. Foram determinadas bases trocáveis (Ca⁺⁺, Mg⁺⁺, K⁺), capacidade de troca de cátions (CTC), foi calculada a soma de bases (SB). A análise granulométrica comprendeu a determinação da porcentagem das frações areia, silte e argila.

Para a obtenção dos dados espectrais, foi utilizado o sensor Infra-Red Intelligent spectroradiometer (IRIS) com resolução de 2 nn na faixa de 400 a 1000 nm e 4 nm entre 1000 e 2500 nm. Foram realizadas três leituras em cada amostra, sendo utilizada a curva espectral média.

A distribuição de probabilidade dos atributos químicos e físicos foi avaliada por meio dos coeficientes de assimetria e curtose. Para atributos identificados como assimétricos foram aplicadas equações de logaritmo ou raiz quadrada. Padrões de comportamento, distribuição e agrupamento dos dados espectrais no espaço multivariado foram avaliados pela análise por componentes principais (PC), onde os *outliers* foram identificados usando os três primeiros componentes principais e removidos através do método da distância de malahanobis. Este mesmo procedimento de identificação de *outliers* foi aplicado aos dados químicos de rotina.

Foram estabelecidas duas metodologias para a seleção de amostras: a) a partir da grade original de amostragem foram estabelecidos três grades, para a extração de amostras, baseados nos seguintes espaçamentos: 200 x 200 m (216 amostras, 108 da profundidade A e 108 da profundidade B), 300 x 300 m (102 amostras, 51 da profundidade A e 51 da profundidade B), 400 x 400 m (54 amostras, 27 da profundidade A e 27 da profundidade B); b) com base nos componentes principais representativos dos dados espectrais, foram selecionados três conjuntos amostrais, de tamanho idêntico aos da metodologia anterior, por meio de amostragem estratificada como método Hipercubo Latino condicionado (cLHS) (Minasny e McBratney, 2006) que fornece uma forma eficiente de amostragem de múltiplas variáveis a partir de sua distribuição.

Para cada conjunto de amostras selecionado, modelos de predição foram calibrados segundo o método de regressão por mínimos quadrados parciais (PLS), (Wold et al. 1982), este método de regressão é semelhante ao método de regressão por componentes principais e é comumente usado em quimiometría analítica para a quantificação de atributos a partir da

reflectancia espectral de amostras. O PLS tem apresentando bom desempenho na estimativa de atributos baseada no comportamento espectral do solo (Vasques et al., 2008; Zornoza et al., 2008). A validação cruzada *leave-one-out* foi usada na determinação do número ótimo de fatores do PLS usados na calibração.

A escolha dos modelos utilizados baseou-se nos seguintes parâmetros da validação cruzada: coeficiente de determinação (R²) (Eq 1), raiz do erro médio quadrático (RMSE) (Eq 2), erro médio (ME) (Eq 3) e desvio padrão do erro (SDE) (Eq 4).

$$R^{2} = \frac{\sum_{t=1}^{n} (\mathcal{Y}_{t} - \bar{\mathcal{Y}}_{t})^{2}}{\sum_{t=1}^{n} (\mathcal{Y}_{t} - \bar{\mathcal{Y}}_{t})^{2}}$$
(Eq 1)

$$RMSE = \sqrt{\frac{1}{N} \sum_{t=1}^{N} (\mathcal{P}_t - y_t)^2}$$
(Eq 2)

$$ME = \frac{1}{N} \sum_{i=1}^{N} (\mathcal{D}_t - \mathcal{Y}_t)$$
(Eq 3)

$$SDE = \frac{\sum_{t=1}^{N} (\hat{y}_t - y_t - ME)^2}{1 - N}$$
(Eq 4)

Onde, \Re_i indica os valores estimados pelo modelo, y_i indica os valores observados e N é o número observações da variável a modelar. Os mesmo parâmetros de validação cruzada foram usados para avaliar o desempenho de cada modelo sobre o conjunto total de dados.

Técnicas de transformação, como a aplicação de log (1/R) (absorbância), e de préprocessamento, como o método da variável normal padrão (SNV) foram utilizadas quando necessárias para melhorar a qualidade dos dados espectrais. Os mesmo parâmetros de validação cruzada foram usados para avaliar o desempenho de cada modelo sobre o conjunto total de dados.

Os atributos preditos e os observados foram relacionados à suas coordenadas geográficas correspondentes. Estimaram-se os semi-variogramas e após deste calculo foi feita uma interpolação usando o método de krigagem pontual, gerando um mapa para cada atributo. Finalmente foi feita uma comparação simples de custos entre analise de solos implementando o uso de dados espectrais e a analise de rotina convencional.

3. Resultados e Discussão

Mediante a aplicação do método estatístico da distância euclidiana para PC1 x PC2 e para PC1 x PC3 foram identificados 61 *outliers* para os dados espectrais. Com o mesmo procedimento foram identificados 58 *outliers* para os dados das análises físico-químicas. Estes *outliers* foram subtraídos do conjunto total de amostras. Os três primeiros componentes principais resultantes dos dados espectrais descreveram 99.9% da variabilidade espectral. Este mesmo número de componentes, no caso dos dados físico-químicos de rotina, descreveu 78.3% da variabilidade. Em ambas as situações, observou-se uma tendência de agrupamento em função das duas profundidades avaliadas (HA e HB).

Todos os atributos avaliados apresentaram altos coeficientes de assimetria e curtose. A transformação dos valores de atributos do solo por meio de funções logarítmicas ou raiz quadrada permitiu enquadrar os valores de assimetria no range de 1 a -1, exceto para areia.

Verificou-se que o melhor processamento para os dados espectrais foi a centralização em torno da media (MC). Para areia e argila, além do MC, foi utilizada a transformação para absorbância (Log(1/R)) e o SNV, respectivamente (Tabela 1).

Conforme o número de amostras para calibração aumentou, em ambos os métodos, os coeficientes de determinação (R²) aumentaram e os valores de RMSE diminuíram. Na validação dos modelos, os valores de R^2 variaram de 0.92 a 0.49, enquanto que o RMSE variou de 7.22 a 5.14, para areia, e de 0.88 a 0.07, para os demais atributos. Optou-se por não validar os modelos para K, pois estes na calibração apresentaram valores de R² muito baixos e RMSE muito altos (Tabela 1). O método de extração de amostras pelo cLHS apresentou valores de R² e RMSE muito semelhantes independentemente ao número de amostras selecionados. A escolha da metodologia, com seus respectivos modelos de estimativa, utilizada para melhor representar os dados originais baseou-se na análise dos valores de R^2 , RMSE, ME, SDE. De forma geral, o método de extração por grade de 200x200 m (216 amostras de calibração) foi o que melhor representou os dados observados na fase de validação (Tabela 1). As validações das predições resultantes da PLS para os modelos deste método são apresentados na Figura 1. Observou-se que na medida em que o numero de amostras usadas para calibração aumentou, em quase todos os casos, o numero de fatores da PLS (NF) também aumentou (Tabela 1). Com menores NF, os espectros de regressão (coeficientes b) são mais suavizados e possivelmente as faixas em que ocorrem as feições de absorção ou de reflexão destes atributos são facilmente identificadas.

A falta de sensibilidade das analises de rotina para os dados observados pode ter prejudicado o desempenho dos modelos, já que os intervalos de medição para argila, Ca e Mg tiveram uma amplitude grande sobre tudo quando os valores foram baixos, como se observa na Figura 2. Isto também pode ser explicado pelo fato de que baixos teores de atributos podem conter maior erro analítico laboratorial (Minasny e McBratney, 2008). Por outra parte no Brasil a variabilidade das analises de solo entre diferentes laboratórios comerciais indica que só entre 74 - 97% das analises químicas de rotina e 68 - 85% das analises de textura são consideradas como aceitáveis (Cantarella et al., 2006). Em relação a estas faixas de valores, os resultados obtidos neste trabalho o nível de acurácia das analises químicas obtido com os modelos desenvolvidos com amostras espaçadas a 200 x 200 m, das analises químicas não está muito longe destes faixas e o nível de acurácia das analises de textura pode ser considerado como ótimo. É claro que estes níveis de acurácia podem ser aumentados significativamente usando técnicas de regressão ainda mais sofisticas e incorporando ouras faixas espectrais como o MID.

É necessário também resolver a questão se desde o ponto de vista de agricultura de precisão, esta metodologia pode ser usada de forma satisfatória neste caso os resultados indicam que para a descrição da variabilidade espacial dos atributos do solo, esta tecnologia de sensoriamento remoto tem um potencial enorme. A estrutura espacial dos dados dos atributos da analise de rotina assim como dos dados das estimações apresentam um comportamento muito semelhante (Tablea 2). O grau de dependência espacial (indicado pela proporção C/(C_o+C)) mostra que esta característica em todos os atributos químicos (SB, Ca, Mg e CTC) preditos apresentou uma dependência moderada e nos atributos físicos (areia e argila) a dependência espacial foi forte. Isto indica que ainda que em alguns casos no conjunto de atributos preditos a dependência espacial tenha sido menor, esta perda de dependência não é significativa. Outro resultado importante é que os atributos preditos ajustaram-se ao mesmo tipo de semi-variograma que os dos atributos determinados convencionalmente, é que o método de estimação de atributos por sensoriamento remoto não mudou a estrutura espacial das variáveis.

		u05 1		54 100 010	• • •	1.1 ~ /	0.2 -					
Atributo	Processamento	NF -	Calibração (n = $\frac{1}{2}$	54. 102. 216) DMCE	$\frac{Va}{D^2}$	<u>uidacao (</u>	n = 837/1	ODE				
	0	da	K ⁻ alust.	KMSE	K^{-} alust.	KMSE	ME	SDE				
A raio ****	SNV MC	de con	n espacamento de	200x200m (n = 7.027)	216)	5 1 4 2	0.012	26 121				
Arela	SINV, MC	1/	0.801	7.027	0.921	5.14Z	-0.013	20.121				
Log SB*	MC	10	0.6/1	0.210	0.731	0.18/	-0.010	0.035				
Log Argila**	Log(1/K), MC	10	0.861	0.086	0.875	0.079	0.002	0.006				
Log	MC	13	0.624	0.243	0.728	0.207	-0.016	0.042				
(Mg-1) ^{0.5} ***	MC	1	0.640	0.698	0.699	0.571	-0.059	0.318				
Log (K +0.5)*	MC	10	0.240	0.212	·		0.010	o o 4 -				
Log (CIC -	MC	, 12	0.523	0.135	0.575	0.124	-0.010	0.015				
Grade com espaçamento de $300x300m$ (n = 102)												
Areia	SNV, MC	15	0.815	7.961	0.899	5.810	-0.006	33.272				
Log SB*	MC	4	0.602	0.221	0.692	0.200	0.014	0.039				
Log Argila**	LOG(1/R), MC	5	0.844	0.087	0.854	0.085	0.003	0.007				
Log	MC	4	0.623	0.239	0.673	0.227	0.014	0.051				
$(Mg-1)^{0.3}***$	MC	5	0.508	0.777	0.649	0.623	0.114	0.370				
Log (K +0.5)*	MC	13	0.054	0.285								
Log (CTC -	MC	4	0.400	0.155	0.492	0.134	0.007	0.018				
	Gr	ade con	n espaçamento de	400x400m (n =	= 54)							
Areia****	SNV, MC	8	0.827	6.200	0.870	6.597	-0.279	42.820				
Log SB*	SNV, MC	4	0.486	0.247	0.629	0.228	-0.050	0.049				
Log Argila**	LOG(1/R), MC	9	0.726	0.104	0.839	0.092	0.002	0.008				
Log	MC	6	0.549	0.249	0.664	0.241	-0.062	0.054				
$(Mg-1)^{0.5}***$	MC	13	0.557	0.697	0.500	0.885	-0.335	0.661				
Log (K +0.5)*	MC	2	0.008	0.249								
Log (CTC -	MC	14	0.462	0.134								
	A	mostr	agem por hipercut	to latino $(n = 2)$	16)							
Areia****	SNV, MC	15	0.883	6.940	0.916	5.423	-0.441	28.760				
Log SB*	MC	5	0.702	0.197	0.702	0.196	-0.011	0.038				
Log Argila**	LOG(1/R). MC	8	0.730	0.129	0.844	0.087	0.000	0.008				
Log	MC	12	0.644	0.237	0.717	0.211	-0.016	0.044				
$(Mg-1)^{0.5}$ ***	MČ	8	0.676	0.612	0.699	0.570	0.001	0.319				
Log (K + 0.5)*	MC	14	0.218	0 223								
Log (CTC -	MC	13	0.540	0.134	0.588	0.124	-0.005	0.015				
Log (ore	A	mostr	agem por hipercul	to lating $(n = 1)$)2)	0.12.	0.000	0.010				
Areia****	SNV. MC	3	0.824	7.951	0.868	6.630	-0.550	43.286				
Log SB*	MC	5	0.564	0 229	0.696	0 1 9 8	0.001	0.039				
Log Argila**	LOG(1/R) MC	4	0.834	0.091	0.841	0.089	0.013	0.008				
Log	MC	4	0 484	0.276	0.669	0.228	0.007	0.051				
$(M_{\sigma}-1)^{0.5}***$	MC	5	0.101	0.693	0.669	0.595	-0.021	0.347				
$I \log (K + 0.5)$ *	MC	3	0.064	0.073	0.007	0.575	0.021	0.547				
Log (CTC -	MC	4	0.451	0.148	0.531	0.130	-0.004	0.017				
Log (CIC -	MC	τ Amosti	agem nor hinercu	bo lating $(n = 5)$	4)	0.150	-0.00+	0.017				
Areia****	SNV MC	Q		5 456	0 854	7 224	1 266	50 077				
Log SR*	MC	5	0.519	0 220	0.697	0.207	_0 010	0.042				
Log Argila**	$I \cap G(1/\mathbf{P}) MC$	5	0.072	0.229	0.007	0.207	0.019	0.042				
Log Aiglia	LOO(1/K), MC	5	0.002	0.082	0.039	0.093	-0.010	0.008				
LOS		5	0.0/8	0.240	0.070	0.234	-0.012	0.034				
(1V1g-1)	MC	2	0.019	0.081	0.025	0.040	-0.078	0.405				
LOG (K +0.5)*	MC	5	0.051	0.228	0.500	0 1 2 2	0.001	0.010				
LO <u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u><u>L</u>O<u></u></u> <u>L</u> O <u></u> <u>L</u> O <u></u> <u>L</u> O <u></u> <u>L</u> <u></u> <u>L</u> O <u></u> <u>L</u> <u>L</u>	IVIU	<u> </u>	U.SUU	0.125	0.309	0.133	-0.001	0.018				

Tabela 1. Resumo estatístico dos modelos

Unidades: * Log (mmol_c dm⁻³); ** Log (%); *** (mmol_c dm⁻³)^{0.5}; **** (%) n: numero de amostras

Figura 1. Validação cruzada entre os valores estimados e observados resultantes da aplicação calibrado com 216 amostras extraídas do grade 200 x 200 m.

Tabela 2. Características dos semi-variogramas dos atributos determinados por análise convencional (valores observados) e dos atributos estimados pelos modelos (sensoriamento remoto)

Atributo		Carateristi	Validação da krigagem							
Attibuto	Modelo	Nugget	Range	Sill	C/(Co+C)	R ² aiustado	RMSE			
	Análise convencional - Valores observados									
Areia	Esférico	19.00	822	132.9	0.87	0.91	5.46			
Log Argila	Esférico	0.0045	798	0.0	0.76	0.83	0.08			
Log SB	Esférico	0.0108	1165	0.050	0.82	0.65	0.13			
Log (Ca+0.5)	Esférico	0.0142	1125	0.0552	0.79	0.61	0.14			
$(Mg-1)^{0.5}$	Esférico	0.1	1065	0.60	0.85	0.68	0.42			
Log (CTC - 1)	Esférico	0.01	600	0.0	0.70	0.72	1.10			
- · · ·	Sensoriamento remoto - Valores preditos pelos modelos									
Areia	Esférico	15.70	705	112.8	0.88	0.89	5.65			
Log Argila	Esférico	0.01	801	0.0	0.71	0.81	0.10			
Log SB	Esférico	0.0147	1675	0.045	0.75	0.60	0.12			
Log (Ca+0.5)	Esférico	0.0171	1475	0.0565	0.77	0.58	0.14			
$(Mg-1)^{0.5}$	Esférico	0.08	1561	0.3	0.80	0.63	0.32			
Log (CTC - 1)	Esférico	0.0030	734	0.0	0.63	0.68	0.07			

Outro importante resultado foi obtido nas validações do método de interpolação espacial dos atributos. Os erros e os R^2 das interpolações não mudam significativamente entre as analises convencionais e as analises por sensoriamento remoto (Tabela 2). Na Figura 3 pode ser feita uma comparação visual entre os mapas obtidos para os atributos estimados e para os observados, onde se percebe em todas as situações uma alta correspondência da variabilidade espacial de amos os dois, os tributos estimados por sensoriamento remoto e os determinados convencionalmente.

Finalmente é importante também levar em conta que esta técnica tem um grande potencial devido a sue baixo custo e rapidez nas analises. Na Austrália o CSRIO fornece o serviço de análise de solos através de espectroscopia de reflectância a um custo por amostra aproximadamente 83% mais baixo em relação ao custo das análises de solos convencionais fornecidos por laboratórios comerciais. Por outra parte o ICRAF (World Agrofoestry Centre, 2005) afirma que usando esta tecnologia o custo da análise de uma amostra de solo é diminuído de USD 50 para USD 0.5, o que significa una redução de 99%. Tomando como

referencia o valor da analise de solo por amostra do laboratório da USP/ESALQ o qual é atualmente de 37 reais (inclui areia, silte e argila), se calculou que o custo das analises químicas para a construção dos mapas da Figura 3 é de 15355 reais. Devido a que a técnica de sensoriamento remoto não demando o uso de insumos químicos pra a determinação estima-se que preço de 5 reais por amostra para fins de mapeamento da variabilidade espacial. Isto significa que a redução do custo das analises de solos para construir inicialmente um conjunto de mapas de atributos químicos da camada A relacionados com a fertilidade do solo como os observados na Figura 3 é de 41% aproximadamente levando em conta que são necessárias neste caso aproximadamente 216 amostras para a calibração de modelos. Se o objetivo fosse também mapear a camada B junto com a A a redução de custos então será de 64%. Mas existe uma vantagem importante, já que os modelos de estimativa de atributos calibrados podem servir para futuras estimações de atributos dentro da mesma área. Então, se o objetivo fosse mapear estes atributos na camada A e os modelos de quantificação a partir da reflectancia já estivessem construídos o custo da analise por sensoriamento pode diminuir para 4 reais, isto significa que o custo das analises para este novo mapeamento diminuirá até 89% (sempre usando a mesma densidade de amostragem) tanto na camada A como na camada B. O anterior reflete o grande avanço que pode ter a agricultura de precisão no Brasil e no mundo inteiro, se estas metodologias de sensoriamento remoto e analise espectral são incorporadas no manejo de solos.

Figura 3. Mapas de variabilidade espacial dos atributos do solo.

4. Conclusões

Através das técnicas de sensoriamento remoto é possível aumentar a densidade de amostragem diminuindo o número de amostras analisadas convencionalmente sem diminuir significativamente a qualidade dos mapas de variabilidade espacial. É claro que os níveis de acurácia obtidos no presente trabalho podem ser aumentados significativamente usando técnicas de regressão ainda mais sofisticas e incorporando ouras faixas espectrais como a do infravermelho médio.

O trabalho demonstra que a técnica tem grande potencial para aumentar a densidade amostral dos dados estimados sem acarretar maiores custos de análise sempre que a densidade amostral para a calibração descrever adequadamente a variabilidade dos dados.

Das metodologias testadas, a amostragem por grade de 200 x 200 m apresentou melhor desempenho na predição dos atributos testados. O método de extração de amostras pelo cLHS apresentou valores de R^2 e RMSE muito semelhantes independentemente ao número de

amostras selecionados. O fato de que seja possível passar de 415 amostras para 216 amostras analisadas convencionalmente e que os custos de um mapeamento inicial de atributos de fertilidade do solo na camada A sejam reduzidos em 41% e até em 89% em mapeamentos posteriores dentro da mesma área, representa um grande avanço no mapeamento digital de solos. Levando em conta que um grande problema na adoção de praticas de agricultura de precisão é a alta quantidade de dinheiro requerida para analise de solos, o sensoriamento remoto fornece uma alternativa com grande potencial para a implementação destas praticas de manejo do solo. Alem disso a significativa redução de custos fornece uma grande potencial para a implementar este tipo de praticas.

Agradecimentos

À Fundação de Amparo à Pesquisa do Estado de São Paulo, pelo auxílio financeiro e na concessão da bolsa a Leonardo Ramírez-López (proc. n. 07/58656-8).

Referências Bibliográficas

Camargo, M.N.; Klant, E.; Kauffaman, J.H. Classificação de solos usada em levantamentos pedologicos no Brasil. Campinas. Boletim Informativo da Sociedade Brasileira de Ciência do Solo, v.12. n1, p.11-13, jan/abr. 1987.

Cantarella, Heitor, Quaggio, José A., van Raij, Bernardo and de Abreu, Mônica F. Variability of Soil Analysis in Commercial Laboratories: Implications for Lime and Fertilizer Recommendations. **Communications in Soil Science and Plant Analysis**, v. 37, p. 2213–2225, 2006.

Demattê, J.A.M.; Genú, A.M.; Fiorio, P.R.; Ortiz, J.L.; Mazza, J.A.; Leonardo, H.C.L. Comparação entre mapas de solos obtidos por sensoriamento remoto espectral e pelo método convencional. **Pesquisa Agropecuária Brasileira**, Brasília, v. 39, n. 12, p. 1219-229, 2004.

Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA). 2006. Centro Nacional de pesquisa de Solos. **Sistema brasileiro de classificação de solos**. Brasília: Serviço de Produção. 412 p.

Minasny. B.; McBratney. A. B. Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy. Chemometrics and Intelligent Laboratory Systems, 2008.

Minasny, B.; McBratney, A.B. A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers & Geosciences 32, pp 1378-1388. 2006.

Odlare, M.; Svensson, K.; Pell, M. Near infrared reflectance spectroscopy for assessment of spatial soil variation in an agricultural field. **Geoderma**, v. 126, p. 193-202. 2005.

Rivero, R.G; Grunwald, S; Bruland, G.L. Incorporation of spectral data into multivariate geostatistical models to map soil phosphorus variability in a Florida wetland. **Geoderma**, v. 140, p. 428–443, 2007.

Viscarra Rossel, R.A.; McBratney, A.B. Soil chemical analytical accuracy and costs: implications from precision agriculture. **Aust. J. Exp. Agric.**, v. 38 (7), p. 765-775. 1998.

Viscarra Rossel, R.A.; Walwort, D.J.J.; McBratney, A.B.; Janik, L.J.; Skjesmstad, J.O. Visible near infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. **Geoderma**, v. 131 (1-2), p. 59-75, 2006.

Wold, H. 1982. Systems under indirect observation. Vols I, II, North Holland, Amsterdam.

World Agroforestry Centre - ICRAF, 2005. Shining light on soil deficiencies. Transformations quarterly. Issue No.2 July.