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Abstract. An investigation about four supervised neural classifiers based on the Minkovski-r error and the 
modified Fisher criterion is evaluated to classify a double textured SAR amplitude image. Regions around pre-
classified pixels are presented to train the neural network that learns a sub-optimal set of masks via back-
propagation algorithm. Classification performance is evaluated using kappa statistics. The neural classifiers 
showed almost the same performance for different window mask sizes and training samples. However, the 
Minkovski-r=1.1 error showed a slightly better performance than the others. Best results are obtained when the 
neural classified image is followed by an erosion process via Median filter. The results outperformed the 
classification performance of two statistical classifiers: the Minimum Bayes error and the Kullback-Liebler 
distance. 
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1. Introduction 

Artificial neural networks (ANN) algorithms has been increasingly applied to remote 
sensing for image classification in the last years, as indicated by classical papers such as 
Benediktsson et. al. (1990), Bischof et al. (1992), Hara et al. (1994) and Chen et al. (1996). 
The Synthetic Aperture Radar (SAR) is a microwave active imagery system that has been 
largely used due to its possibility of day-and-night operation in almost all-weather conditions. 
According to Oliver and Quegan (1998), the SAR system generates images by the coherent 
processing of the scattering signals, so the resulting scene texture has an undesired 
multiplicative speckled noise that reduces drastically the ability to distinguish the features of 
the classes. The rejection of the speckle noise motivated many works where ANN algorithms 
has been applied to SAR imagery classification, such as Ghinelli and Bennett (1997), Ito and 
Omatu (1998), Tzeng and Chen (1998), Frate and Lichtenegger (1999), Gedira et al. (2000) 
and Jacob et al (2002). 

According to Hara et al. (1994) and Gedira et al. (2000), the rapid increase of ANN 
applications in remote sensing imagery classification is due mainly to their ability to perform 
equally or more accurately than other classification techniques. In a general way, the major 
advantages of the neural network method over traditional classifiers are: (1) easy adaptation to 
different types of data and input configuration; (2) easy incorporation of ancillary data 
sources, as textural information, which can be difficult or impossible with conventional 
techniques; (3) does not use unreasonable assumptions about statistics properties of the data, 
that is, does not need a priori knowledge about parameters of distributions; (4) finds the best 
nonlinear function, in the optimal case, between the input and the output data without any 
constraint of linearity or pre-specified nonlinearity which is required, for example, in 
regression analysis; (5) may be implemented with reduced storage and computation 
requirements. 

Hara et al. (1994) also showed that supervised neural network classifiers (NC) have 
outperformed unsupervised methods because the last one utilizes no a priori class information. 
Therefore, multi-layer feed-forward networks trained by the back-propagation algorithm is the 
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most common ANN used for image processing due to its great classification potential and 
implementation simplicity. 

Fully polarimetric SAR data were used to train a multi-layer feed-forward network using 
a dynamic Kalman filtering, as in Chen et al. (1996) and Tzeng and Chen (1998), while Ito 
and Omatu (1998) used the classical back-propagation. These data were also used to 
multitemporal data classification by Frate and Lichtenegger (1999) and Gedira et al. (2000). 
Texture information was explored by Ghinelli and Bennett (1997) and Jacob et al. (2002).  

In this paper, it was investigated the classification performance for the supervised neural 
classifiers based on two different cost functions: the Minkovski-r error and the modified 
Fisher cost. The classification test was made via a multi-layer feed-forward artificial neural 
network, trained by using the back-propagation algorithm with the aim to extract filtering 
masks around a center pixel to be assigned to one of the two classes from a double textured 
SLC-SAR amplitude image with known edge. The performance was evaluated by using kappa 
statistics as function of the size of the masks and the number of samples used for learning. An 
analysis about the edge degradation was also investigated. The results were compared with 
two well-known statistical classifiers: the Minimum Bayes error and the Kullback-Liebler 
distance. Median filter was also used in the post-processing to increase the classification 
performance. In the next session, we describe the experimental data used for evaluating the 
classification performance. In section 3, the supervised neural network classifiers are 
described. Experimental results and conclusions are presented in section 4 and 5, respectively. 

2. Experimental Data 

To investigate the performance of the supervised neural classifiers, a spacial correlated Single 
Look Complex Synthetic Aperture Radar (SLC-SAR) images with two classes were simulated 
taking into account the multiplicative speckle noise. The image was generated by using a 
stationary circularly symmetric separable Gaussian Markov Random Field (GMRF), as in 
Fernandes (1998), with a correlation coefficient equals to 0.7 between the range and the 
azimuth pixels. This means the data employed in this work are realistic scenes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                (a)                                                                                    (b) 
Figure 1. (a) 128x128 amplitude SAR image with two distinct classes and a known edge. (b) 
Histograms with 50x50 pixels per class region. 
 

The aim here is to generate a simulated amplitude image with two distinct classes 
separated by a priori known edge. In this case, as in Figure 1-(a), a resulting 128x128 pixels 
amplitude SAR image was created with two distinct classes Rayleigh distributed with 
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expectance 45.00 for class A, the darker one, and 90.00 for class B. In Figure 1-(b), a 50x50 
pixels region from each class was put on a histogram that shows a large overlap between the 
distributions. The estimated values obtained were 45.09 and 579.58 for average and variance 
of the class A, respectively, and 87.24 and 2021.37 for the class B. 

3. Supervised Neural Network Classifiers  

The ANN architecture used to classify the double textured amplitude SAR image is a 
multi-layer feed-forward network that receives input from a (2M+1)x(2M+1), M>0, ordered 
and squared region around the pixel (r,c), or (row, column), to be classified. The input layer 
feeds through hidden layers to a single output node that assigns the center pixel (r,c) to one of 
the two classes, according to the output signal polarity. Conventionally, the weights from the 
input image to the first hidden layer neuron are called mask and the total output signal vector 
of this first hidden layer is called feature vector. The traditional hyperbolic tangent function 
was used in all the layers as the activation function due to its speed of convergence and low 
computational cost to implement the derivative. 

The use of filtering masks based on regions classification as input images aims at 
reducing the dimensionality of the feature space and, therefore, at facilitating the ANN 
learning process due to reduction of the curse of dimensionality, as explained by Haykin 
(1999). The main idea here is if the ANN is successfully trained, the first hidden layer will 
extract optimal filters obtained by the masks, thereby enabling it to emphasize intrinsic 
characteristics in the classes of the image. Depending on data complexity, a subsequent 
hidden layer will be necessary and it will be able to help extracting other internal data 
representations. The single output neuron has the function to classify the center pixel (r,c). 

Training the ANN means updating their synaptic weights in such a way that an objective 
function, or cost function, is maximized or minimized. The Minkovski-r Error ( rME ), or LR 
norm, is a generalized metric distance where the r  exponent is useful for various aspects of 
representing information, that is, 
 

( )r
odr yy

r
ME −= 1 , 0>r , (1) 

 

where dy  is the output desired signal of the output neuron and oy  is its output signal 
measured. According to Bishop (1995), small r  exponents, or 2<r , give less importance for 
large deviations in the error and tend to reduce the influence of outlier points in the feature 
space during learning. For the case 2=r , the cost function (1) reduces to the usual sum-of-
squares error that boils down to the classical back-propagation deduction, as in Haykin 
(1999). 

Traditionally, Fisher criterion is a tool to reduce the dimensionality of the input space of 
data to be classified by using its average and variance, as in Fukunaga (1990). The proposal 
here, according to Jacob et al. (2002), is to use the modified Fisher Error ( FE) (2) instead of 
the complete one because it does not considerably affect the classification performance and is 
not so computationally expensive to train the network. So, we employ 
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where iµ , BAi ,= , are the output signal neuron averaged by all the training data from class 
A and class B, respectively. In this case, in contrast to rME , the cost function must be 
maximized to a successful learning. 
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Here, to train the ANN we used a steepest descent/ascent algorithm implemented via 
back-propagation. Therefore, the cost functions (1) and (2) may not reach the global 
minimum/maximum and the filters extracted will not be optimal. To avoid this, genetic 
algorithm could be used, but this would increase the computational complexity considerably. 

4. Experimental Results 

In this section, the performance results of four supervised neural classifiers (NC) used to 
classify the double textured amplitude SAR image from Figure 1-(a) are presented. The goal 
is to compare the performance for two different cost functions: the Minkovski-r Error and the 
modified Fisher c ost, where in the first case three different exponents were used: r=1.1, r=1.5 
and r=2.0. It was investigated the best classification performance based on kappa statistics, 
see Bishop et al. (1976), versus the size of the mask and the influence of the quantity of 
samples in the training. 

In both cases, Minkovski and modified Fisher costs, the back-propagation was applied 
with a constant learning rate parameter and a speed-up momentum term until 1500 iterations 
were reached or when the rate of change is smaller than 5x10-4 for the first cost or 10-3 for the 
second one. For the Minkovski's cases, if the output signal is positive, the center pixel (r,c) is 
assigned to class A, and if is negative, to class B. But for the modified Fisher cost, the 
network performed a classification based on the matching of the output signal polarity and the 
a priori training data, because (2) has two possible solutions. Performance results based on 
kappa statistics are shown in Figure 2. Kappa coefficient was evaluated with more t han 2500 
points in each class. All data presented here has cost function smaller than 10-2 for the rME  
and larger than 1.8 for the FE , and the network topology has only one hidden layer with two 
neurons. Other more complex network topologies were tested but the classification 
performance improvement was only marginal. 

Figure 2-(d) indicates that the network trained with the modified Fisher cost presented 
difficulty to learn with 5x5 and 7x7 mask sizes, so just two points were obtained. In a general 
way, all the cost variations, mainly in the Minkovski-r error, have almost the same 
performance. However, the Minkovski-r=1.1 showed a bit better results than the others. So, as 
discussed in Section 3, smaller r  exponents decrease the effect of the outliers data training 
points. For all the Minkovski's classifiers, the best performance occurred with a 5x5 size mask 
and, except for r=2.0, the performance did not increase gradually as the number of data 
training were presented, that is, the over fitting occurred. 

The performance results of the supervised neural classifiers were also compared with 
those obtained by two statistical classifiers: one based on the Minimum Bayes error, as in 
Fukunaga (1990), that generates a Bayes decision rule for the minimum misclassification 
error among classes; and other based on the Kullback-Liebler distance (K-L), as discussed in 
Carvalho (1999). For the both cases, it is assumed that the classes have a priori known 
distribution functions, so their respective parameters are extracted to solve the classification 
problem. 

In Table 1, confusion matrices and their respective kappa coefficients were computed to 
represent the classification performance for the statistical classifiers. The best classification 
performance of the Minimum Bayes error method, that is, its optimal result, has shown a poor 
performance if compared to the K-L method. As showed in Figure 1-(b), it occurs because 
there is a higher misclassification error between the classes A and B. For the K-L method, 
however, it was chosen 3 samples of 11x11 window per class to extract the parameters from 
the regions, and a 5x5 window performed the region attribution. In this last case, the 
minimum distance method showed better classification performance than the Minimum Bayes 



Anais XI SBSR, Belo Horizonte, Brasil, 05 - 10 abril 2003, INPE, p. 2047 - 2054. 

 2051 

error and the supervised neural classifiers, as in Table 2-(a). Slightly better results were 
obtained after a 3x3 Median filter (MF) decreases some speckled misclassifications. 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                  (a)                                                                                  (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                 (c)                                                                                   (d) 
Figure 2. Classification performance varying the size of the masks and the number of training 
samples using the following costs: (a) ME1.1. (b) ME1.5. (c) ME2.0. (d) FE. 
 
Table 1. Confusion matrices: Minimum Bayes error, simple K-L and K-L with Median filtering 
method for classes A and B. 

Minimum Bayes Error  K-L  K-L + 3x3 MF 
Known Classification  Known Classification  Known Classification 
Class A B  Class A B  Class A B 

A 0.83 0.17  A 0.93 0.07  A 0.96 0.04 
B 0.39 0.61  B 0.12 0.88  B 0.11 0.89 
 Kappa = 0.44   Kappa = 0.80   Kappa = 0.84 

 

The supervised neural classified image, or supervised neural thematic map, also for the 
best results, has a higher number of misclassified points because the network had difficulty to 
learn the speckle noise. This occurred mainly in the class B, where the class variance is bigger 
than the class A. Table 2 shows the confusion matrices and their respective kappa coefficients 
obtained by the supervised neural classifier (NC) trained with the Minkovski-r=1.1 cost, 5x5 
window mask and 15 training samples per class. The simple NC obtained a fair classification. 
However, as presented in Table 2-(b) and (c), increasingly better results were reached when 
using Median filters to erode the image. 
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Table 2. Confusion matrices: 5x5 mask neural classifier based on ME1.1 simple and with Median 
filtering for classes A and B. 

Minkovski r=1.1  Minkovski r=1.1 + 3x3 MF  Minkovski r=1.1 + 5x5 MF 
Known Classification  Known Classification  Known Classification 
Class A B  Class A B  Class A B 

A 0.93 0.07  A 0.98 0.02  A 0.99 0.01 
B 0.24 0.76  B 0.14 0.86  B 0.08 0.92 
 Kappa = 0.69   Kappa = 0.84   Kappa = 0.91 

 

Figure 3-(a) and (b) show histograms that contain the number of points classified in each 
image line as class A and class B the neural classified thematic map obtained by the 5x5 mask 
Minkovski-r=1.1's NC trained with 15 samples per class. These graphics are able to show the 
edge degradation and the classification performance in a qualitative way. Then, with a 5x5 
size mask, the edge degradation is about 3 or 4 pixels around the ideal known edge and the 
5x5 size mask Median filter, when passed through the edge, makes the region a bit more 
uniform. Figure 3-(c) and (d) present the result images without and with the Median filtering, 
where the black pixels represent the edge effect occurred by the filtering masks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                          (a)                                                                              (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                     (c)                                                                                   (d) 
Figure 3. (a) Number of points classified as white samples or class A by image line. (b) 
Number of points classified as gray samples or class B by i mage line. (c) Neural classified 
thematic map for the 5x5 size mask trained via Minkovski-r=1.1 and 15 samples per class. (d) 
Last image eroded by a 5x5 Median filter. 
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The investigation showed that the minimum Bayes error is not a good method to classify 
images with an elevated misclassification error due to the Rayleigh distribution classes. The 
K-L method has better results, however needs a higher amount of training information to 
extract the well-known parameters of the distribution classes. In our case, for example, the 
image does not have any additive thermal noise or other that represents any other undesired 
information. For NC, in contrast, it does not matter if there are noise or not, because it does 
not assume any parametric well-known distribution. 

5. Conclusions 

In this paper, four supervised neural network classifiers were applied to a simulated SAR 
image with just two classes. The main goal was to carry out to a detailed performance 
evaluation on the same data set, in contrast to the available literature, which usually deals with 
a single application, thereby rising the question if a better result could be obtained otherwise. 
Additionally, the performance of the neural network classifiers, when compared with 
statistical classifiers, was better than the minimum Bayes error and slightly better than the K-
L method, when a Median filter is used in the post-processing. 
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