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Abstract. A method for classifying agricultural crops using multi-temporal, multi-spectral and multi-source 
remotely-sensed data is described. The procedure characterizes all the pixels in a scene by considering their 
intensity values as a function of time of imaging and spectral waveband. An analytical surface is interpolated 
through these data points, which may be irregularly spaced. Two fitted function interpolation methods were used 
to generate and parameterize the analytical surfaces. Then, the surface coefficients were input to two different 
supervised classifiers (Maximum Likelihood and Artificial Neural Network algorithms). Results show that 
classification accuracy is significantly improved in comparison with the use of any single-date image. 
Classification accuracies in excess of 87% were achieved. The advantages of the methodology described in this 
paper are that it takes account of the reflectance spectra at different points in the growing season, and that the 
time periods between images, as well as the wavebands, need not be the same at each date. Thus, the procedure 
can handle data from sensors such as SPOT HRV and Landsat TM. In addition, the use of coefficients to 
represent the analytical surfaces significantly reduces the amount of data processing, whilst maintaining 
information reliability. 
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1. Introduction 

Efficient crop management practices require accurate and rapid information about crop 
distributions. Commonly, multispectral remotely sensed images are used to distinguish crop 
types on the basis of their spectral properties (Mather, 1999). However, such analysis 
involving single-date images has the drawback that, since maximum discrimination between 
different crop types occurs at different stages in the growth cycle, not all differences are 
incorporated in the procedure. Moreover, different crop types represented in the area under 
study may be at different stages of growth. In addition, the temporal 'profile' of the spectral 
reflectance curve of each crop is not taken into account. Such profiles may be of considerable 
value in discriminating between crop types, which may be difficult to distinguish at certain 
points in the growth cycle. Furthermore, results derived from data obtained by different 
sensors may not be comparable due to differences in spectral and spatial characteristics. 
Finally, since agricultural crops are dynamic, it is often useful to observe their development 
over time (e.g., crop yield estimation). A solution is to use multitemporal images for crop 
monitoring (Badhwar et al., 1982). For most current multitemporal classification techniques, a 
correspondence of time to growth state is established for each possible crop category that 
minimises the smallest difference between the given multispectral-multitemporal vector and 
the category mean vector indexed by growth state (Haralick et al., 1980). These techniques, 
however, are fairly inaccurate since only relatively few static spectral and temporal 
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‘snapshots’ contribute to crop identification. That is, images with specific spectral wavebands 
acquired on specific dates are used, rather than images with entire spectral and temporal 
continua. Using the latter may increase crop classification accuracy since they contain more 
information than the former (Labin and Strahler, 1994).  

This paper demonstrates a methods of classifying agricultural crops using the spectral-
temporal signatures of remotely sensed images. Per-pixel classifications are performed using 
multispectral, multitemporal and multisource data, whereby analytical surfaces representing 
the spectral and temporal continua of each feature (pixel) are interpolated and their 
coefficients are used as discriminating variables. 

2. Study Area and Data Set 

The study area was located near the town of Littleport in Cambridgeshire, eastern England. 
This area was approximately at mean sea level with gently undulating topography. The 
agriculture of the region was characterized by rotational crop plantation techniques. 
Eight remotely sensed images acquired throughout the 1994 summer growing season were 
used for analysis. These included four Landsat TM images (11 June, 27 June, 20 July, 14 
August) and four SPOT HRV images (13 May, 28 June, 30 July, 14 August). Only six 
spectral wavebands of Landsat TM imagery were used since the thermal infrared band (band 
6) was omitted from analysis. In addition, local farmers’ Field Data Printouts for 1994 were 
collected and used to generate a ground reference data set. 

All images were geometrically registered to the British National Grid. For each image, 
registration was performed using 17 ground control points and nearest neighbor re-sampling, 
since this technique maintained the original pixel values (Jensen, 1986). In each case, the 
root-mean-square error associated with registration was less than 0.5 pixels. 

Atmospheric correction was performed to account for atmospheric differences between 
multitemporal images. Initially, image digital numbers were corrected to radiance using 
information supplied with the image data files (Teillet and Fedosejevs, 1995). Radiance was 
then converted to apparent reflectance (recorded at the sensor) and finally to surface 
reflectance. The final step used an inversion of the 5S (Simulation of the Satellite Signal in 
the Solar Spectrum) model (Tanré, 1990). 

3. The Spectra-Temporal Response Surfaces (STRS) Model 

Badhwar et al. (1982), Badhwar (1984), Haralick et al. (1980), Lambin and Strahler (1994) 
and Ortiz et al. (1997) consider the problem of characterizing the temporal dimension but 
none utilizes the method proposed by Vieira et al. (1998, 2000), involving the use of the 
spectra-temporal response surfaces (STRS), which provide for the generalisation in time of 
spectral reflectance properties of agricultural areas. The type and sequence of procedures used 
in the generation and potential use of the STRS representations are outlined in Figure 1. 

The STRS approach is based on a view of multi-band and multitemporal imagery from 
different sources represented in a three-dimensional space, the axes of which are time (x), 
spectral waveband (y) and reflectance (z). Measurement from a number of different sensors in 
the optical wavebands can be plotted in this space. A bivariate polynomial of the form: z = 
F(x,y), where F() indicates a polynomial function of some order, is generated for each of the 
crop types in the area of study. Two methods were used in order to generate the fitted 
surfaces: polynomial trend surface analysis (PTS) and collocation (COL), since fitted function 
interpolation can impose a prescribed general behavior on the surface to override aberrant, 
anomalous, or noisy data. Watson (1999) and Lam (1983) give comprehensive reviews on 
these interpolations methods and Mather (1976) reviews polynomial trend surfaces. 
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These analytical functions are then parameterized and their coefficients, rather than the 
pixel values in each spectral band, are used as input features in the image classification 
process. 

4. Methodology 

4.1. Sampling Techniques and Classification Phase  

From the co-registered and radiometrically corrected image set, two independent sample sets 
(total 1440 pixels) were selected using stratified random sampling technique and representing 
the six most common cover types in the study area: Potatoes, Sugar beet, Wheat, Fallow, 
Onions, and Peas. Each sample has 120 patterns per class (total 720 pixels). One sample 
(selected at random) was used to training the classifier and the other one was reserved for 
validating the methodology.  

The image acquisition dates were expressed in the form of Julian days (x-axis) and the 
spectral dimensions (y-axis) were characterized by their medial waveband values computed in 
the form of wavelengths. Thus, the spectral bands were labeled using the medial wavelength 
values of 0.458, 0.56, 0.66, 0.83, 1.645, 2.215 – given to the six available TM channels 
(except the thermal infrared TM band 6) - and 0.545, 0.645, 0.84 – given to the three HRV 
channels respectively.  

The radiometric properties are expressed in the form of reflectance values along the z-
axis. Furthermore, for each pixel, 36 three-dimensional control points were generated (4 TM 
images with 6 bands plus 4 SPOT HRV images with 3 bands). It is important to mention that 
the values along the x, y and z axes are scaled into the interval between 0 and 1, sometimes 
referred to as normalization, before the interpolation phase. 

Initially the control points were used to fit a surface using a Polynomial Trend Surface as 
described earlier. Although a surface order of 7 (36 coefficients) explained over 99% of the 
sum of squares, using a surface order of 3 (10 coefficients) experimentally proved to be 
enough to characterize the analytical surfaces. Then, the same control points were used to fit a 
surface using the Collocation Interpolator. As the interpolated coefficients show different 
magnitudes on their values, they were again scaled collectively to the interval between 0 and 
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Figure 1. An outline of the methodology followed in this study to generate the STRS representations 
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1 before the training and test phases. One pixel example of the PTS and Collocation analytical 
surfaces is shown in Figure 2 (a to f) for each crop. 

According to Vieira et al. (2000) the Maximum Likelihood (ML) classifier is the 
algorithm that best combines classification accuracy and computational economy when these 
coefficient are used as input into the classification process. Therefore, a supervised 
classification was performed using the Maximum Likelihood (ML) algorithm developed by 
Mather (1999) and adapted to classify 3D surface coefficients.  

For the purposes of comparison, a single-date image (Landsat TM, acquired on 27th June 
1994) was used to perform a standard classification in order to compare the results of this 
multitemporal and multisource method against a classification based on a single-date image. 
For each pixel, the six reflectance values are considered together and, therefore, generating a 
six dimensional vector, to be also used as input into the supervised classifiers: Maximum 
Likelihood (ML), Artificial Neural Network (ANN) and two variants of an Artificial Neural 
Network (ANN and ANNT).  

Both artificial neural network architectures chosen are multilayer perceptrons using the 
backpropagation algorithm (Benediktsson et al., 1990; Bischof et al., 1992; Civco, 1993). The 
only difference between the models is in the input layer. The first ANN model was 
implemented having one pixel per spectral band in the input layer. Therefore, this neural 
network had 6 nodes in the first layer. The input nodes in the ANNT model represented a 3 by 
3 window of pixel data from each band of the image (total 54 nodes in the input layer) as the 
input (Paola, 1995). This input modification takes local texture information into account. 

All neural networks configurations tested had an output layer with 6 nodes, 
corresponding to the 6 general crop classes. The number of hidden layers and the number of 
hidden nodes were found (1 hidden layer and 10 nodes) using the Hirose et al. (1991) building 
up procedure. The learning rate and momentum were set initially at 0.2 and 0.9 respectively. 
The learning rate was reduced during the training to 0.1 after 1000 epochs. 

For this second experiment, two sample sets were selected using stratified random 
sampling based on the reference image (ground truth), which was generated in the same scale 
and projection system as the remotely sensed data. Each sample has also 120 patterns per 
class (total 720). One sample set was used to training the classifiers and the another 
independent sample set were reserved to assessing the accuracy of the classification. 

 

Figure 2. Analytical surfaces and contours for several crops. 
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4.2 Accuracy Assessment 

In order to perform a systematic investigation of the relative (improvement of accuracy) cost 
involved in the incorporation of the temporal dimension into the crop classification process, 
standard accuracy measures derived from a confusion matrix were computed, using an 
independent test data set based on the Field Data Printouts. The measures based on the 
confusion matrix were overall accuracy, individual class accuracy, producer's accuracy and 
user’s accuracy. The calculations associated with these measures are described in standard 
textbooks (e.g., Mather, 1999). The Kappa coefficient, conditional Kappa for each class, and 
test Z statistics, all of them widely used statistics derived from the contingency matrix, were 
also computed (Congalton and Green, 1999).  

In addition, a pairwise test statistic for evaluating the significance of the classifiers 
(represented here by their respective confusion matrices), was calculated utilizing the Kappa 
coefficients. These results are summarized in form of a significance matrix, in which the 
major diagonal elements indicate if the respective classification result is meaningful. In this 
single confusion matrix case, the Z value can be computed using the formula )var(KaKaZ = , 
where Z is standardized and normally distributed and var is the large sample variance of the 
Kappa coefficient K.  If Z ≥ Z α/2, the classification is significant better than a random 
classification, where α/2 is the confidence level of the two-tailed Z test and the degrees of 
freedom are assumed to be infinity. On the other hand, the off diagonal elements give an 
indication, again if Z ≥ Zα/2, that the two independent classifiers are significantly different. 
The formula used to test for significance of the difference between the two independent 
Kappa coefficients is: )var()var( 2121 KaKaKaKaZ +−= , where the Ka1 and Ka2 are the two 
Kappa coefficients in comparison (Congalton and Green, 1999).  

5. Results and Discussions  

Classification accuracies for six agricultural crops using the six multispectral bands of a 
single-date TM Landsat image, Polynomial Trend Surface (PTS) and Collocation as input 
features into three supervised classification algorithms - maximum likelihood (ML), artificial 
neural networks (ANN) and artificial neural network texture (ANNT) are presented in Table 
1. Individual classification accuracy for each crop (Conditional Kappa * 100), overall 
accuracy, the value of the Kappa coefficients and their variances, and test Z statistic are 
reported in this table. These accuracies were calculated from an independent dataset (720 
patterns). The pixels received the label of the output class having the highest probability. 

As the absolute value of the test Z statistic is greater than critical value of 1.96, all the 
classification results are significant better than a random classification at the 95% confidence 
level. Moreover, it is noteworthy that the level of accuracy was gradually improved by 
employing to the single-date Landsat image the different classifiers ML (72.9%), ANN 
(77.6%) and ANNT (81.7%) respectively. However, the overall performance level attained 
with the features generated using the STRS (i.e., the PTS and Collocation coefficients) as 
input features into a ML classifies were considerably greater (by 5.7%) than the ones obtained 
by a single-date image. Oddly fallow is the only individual category for which the accuracy 
was decreased using PTS and Collocation features.  

The lower performance achieved with ML classifier using only the TM multispectral 
bands is believed to be due in part to a non-linear separability of the classes under study and 
to a magnitude of training data set inconsistent with the design properties and assumptions of 
the supervised maximum likelihood algorithms. Moreover, for some of the crops (e.g., sugar 
beet and potatoes, or onions and peas) the multispectral profiles for that date are not very well 
separated. Even so, the neural models produce a satisfactory performance on the same data 
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set. Furthermore, the separability of the classes are considerable improved when the local 
spatial variance of individual pixels is implicitly taken as input into the neural network model 
by employing a widows 3 x 3 as implemented in the ANNT algorithm.  

 
Table 2 provides the computed Z values for a pairwise statistical test in order to check 

how significant are the improvements on the classification accuracy. The classification 
accuracy obtained using the STRS approach (PTS and Collocation using ML algorithm) were 
found to be significantly improved in relation to the individual classifiers ML, ANN and 
ANNT, in which only a multispectral single-date image was used as discriminate variables 
(see yellow pair, Z > 1.96 at 95% of confidence level). This demonstrates a need to utilise the 
STRS approach if one is to achieve the highest accuracies possible in crop discrimination. 
Moreover, there is no significant difference between the performance of the ML using PTS or 
Collocation coefficient as input features (see blue pair, Z = 0.05 < 1.96). Therefore, it could 
be concluded that, for this data set, these two sets of feature variables may work together 
because they produce approximately equal classifications. If two different techniques or 
algorithms were being tested and if they were shown to be not significantly different, then it 
would be best to use the cheaper, quicker, or more efficient approach.  

As have been expected the use of neural network models significantly overcome the 
performance of the ML classifier using a single date Landsat TM image. However, the results 
indicate that there are no significant differences in performance between the ANN and ANNT 
algorithms (Z = 1.89 < 1.96) at the same confidence level. 

Table 1. Classification accuracies for six agricultural crops using Single-Date LANDSAT Image, 
Polynomial Trend Surface (PTS) and Collocation (COL)) and three classification algorithms - 
maximum likelihood (ML), artificial neural networks (ANN) and artificial neural network texture 
(ANNT). The table shows individual classification accuracy for each crop (Conditional Kappa * 100), 
overall accuracy, the value of the Kappa coefficients and their variances, and test Z statistic. If the 
absolute value of the test Z statistic is greater than 1.96, the result is significant better than a random 
classification at the 95% confidence level. These accuracies were calculated from an independent 
dataset test (720 patterns). 

 

Table 2. Results of Kappa Analysis for comparison among the classifiers. The table also presents the 
Kappa coefficients and variance for each classifier. The Z values (in major diagonal and off diagonal 
elements) were computed using formula as describe in subsection 4.2. 

CLASSIF       ML      ANN     ANNT      TSA      COL

KAPPA 0.675 0.732 0.78 0.848 0.847
VAR   0.000394 0.000347 0.000299 0.000219 0.000222
ML 34.01
ANN 2.09 39.30
ANNT 3.99 1.89 45.11
TSA 6.99 4.88 2.99 57.30
COL 6.93 4.82 2.94 0.05 56.85  
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6. Conclusions 

A methodology for classifying agricultural crops combining multi-temporal, multi-spectral 
and multi-source remotely-sensed data has been shown to be effective in identifying general 
agricultural crop classes over an area in East Anglia (UK). Classification accuracies in excess 
of 87% were achieved, even though parts of some of the images are covered by clouds. The 
basic assumption of the method, that different crops have different spectral-temporal 
trajectories, has been used in earlier studies. However, the methods used to characterize the 
spectral reflectance changes over a growing season using a spectral-temporal surface 
represents a promising new approach, for several reasons. First, the method can deal with 
multi-sensor data, as the spectral bands measured at each date do not need to be the same. 
Second, data points obscured by clouds can be filtered out throughout the interpolation and 
parameterization procedures of the analytical surfaces. Third, the overall spectral variation of 
a given crop class over the growing season is captured by a set of coefficients, which are 
fewer in number than the training data pixels and hence produce computationally more 
efficient classifiers. 
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