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Abstract. Tone and texture are two fundamental characteristics of remotely sensed images. Current research on 
the remote sensing of tropical forest biomass uses the tone (i.e., backscatter) of Synthetic Aperture Radar (SAR) 
images as this is related directly to biomass (albeit up to the backscatter/biomass asymptote). As a tropical  forest 
canopy ages so its unevenness increases, progressing from smooth to rough. Therefore a measure of SAR texture 
that is independent of SAR tone has the potential of increasing the biomass maxima that can be estimated with 
SAR data. This experiment used simulated SAR images designed to reproduce forest canopies and different 
patterns of tone (or contrast) and texture (or clumpiness).  Twenty six texture measures (derived from local 
statistics, the grey-level co-occurrence matrix (GLCM) and variograms) were calculated for these simulated 
images. Measures sensitive to texture (clumpiness) and/or tone (contrast) were identified using Analysis of 
Variance (ANOVA). Seven texture measures were recommended for the estimation of tropical forest biomass 
with SAR images. 
 
Keywords: SAR, texture, simulated images, forest canopies. 
 

1. Introduction 

 
Texture in remotely sensed imagery can be defined as variation in grey level tone within a 
neighbourhood. This variability reflects the spatial relations between pixels and is dependent 
upon (i) the spatial frequency of the neighbourhood and (ii) the spatial resolution of the 
remotely sensed data (Mather 1999).  

Texture has proved to be a useful adjunct to tone for forest type discrimination with 
Synthetic Aperture Radar (SAR) data (Miranda et al. 1998, Kurvonen and Hallikainen 1999, 
Saatchi et al. 2000).  

The three main approaches to the quantification of texture in remotely sensed images are 
first, local statistics, such as mean, skewness, kurtosis and coefficient of variation (cv) for an 
image window (Soares et al. 1997, Kurvonen and Hallikainen 1999). Second, second-order 
statistics (such as entropy, energy, contrast) which describe statistical dependence between 
pixels in a given distance and direction. These can be calculated from Haralick´s grey-level 
co-occurrence matrix (GLCM) (Haralick et al. 1973) or the Sum and Difference Histogram 
(SADH) (Unser 1986). Third, the variogram and its descriptors as a concise characterisation 
of the scale and pattern of spatial variability (Curran et al. 1998).  

Microwave backscatter is recorded on SAR imagery as tone (Raney 1998) and is related 
positively to the biomass of forests up a wavelength-dependent asymptote (Imhoff 1995). For 
tropical forests the canopy becomes more uneven or “clumpy” with increasing biomass 
(Richards 1996). It has been hypothesised that texture (as a measure of both canopy biomass 
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and unevenness) could be related positively to biomass up to and beyond the asymptote of the 
backscatter/biomass relationship. 

 This experiment used simulated images (Woodcock et al. 1988) and was part of a larger 
study concerned with the SAR backscatter/biomass relationship for tropical forest and 
pasture. The objective here was to identify texture measures that maximised the 
discrimination of textural information independently of tone (i.e., backscatter). Such measures 
would potentially increase the biomass range that could be estimated with SAR data. 

 

2. Simulating images of forest canopies  

Different levels of image contrast (tone) and “clumpiness” (texture) were created by means of 
nine matrices. These matrices were conceived as simulated digital images of forest, with DN 
varying from 1 to 9. The trees were disposed in big clumps, small clumps and randomly. 
Inside these three basic types of spatial arrangement (or texture) the contrast was simulated as 

high, medium and low. The mean (X ) DN was held constant in the images and the standard 
deviation (S) was adjusted to create the intended contrast (Table 1). 

 
Table 1. Simulated images, with different clumpiness and contrast. Standard deviations (S) defining 
contrast level (high, medium, low) are shown and b refers to big clumps, s refers to small clumps and r 
refers to random. 
 

                                                     CLUMPINESS       

 Big clumps  Small clumps  Random 

High (S ≥ 2.5) bhigh shigh rhigh 

Medium (S ≅ 1.5) bmed smed rmed 

C
O

N
T

R
A

ST
 

Low (S ≤ 1) blow slow rlow 

 
This small simulated data set was created in order to evaluate algorithm sensitivity to a 

wide range of textures (clumpiness) and tones (contrast). The simulation of real SAR images 
would include an even wider DN range and noise (to account for speckle). The nine matrices 
along with their representation as simulated digital images (in which minimum and maximum 
DNs were represented as black and white, respectively), are shown in Figure 1. Interestingly, 
the random arrangement (Figure 1.g,h,i) of the simulated images is visually similar to the real 
SAR images of tropical vegetation. 

 
3. Texture measures 
 
Twenty six texture measures were calculated for the simulated images: 

* Derived from local statistics: mean absolute deviation (mad), median (med), entropy 
(ent), energy (ene), skewness (ske), kurtosis (kur) and coefficient of variation (cv). 

*Derived from the grey-level co-occurrence matrix (GLCM) and Sum and Difference 
Histogram (SADH): contrast (conh), entropy (enth), energy (eneh), homogeneity (hom), 
correlation (cor), chi-square (chi), mean of the sum vector (sme), variance of the sum vector 
(sva), entropy of the sum vector (sent), energy of the sum vector (sene), mean of the 
difference vector (dme), variance of the difference (dva), entropy of the difference vector 
(dent) and energy of the difference vector (dene) (Soares et al. 1997).  
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      a.    b.     c. 

  
      d.    e.  f. 

   
      g.    h.   i. 
Figure 1. Simulated images with mean (X =3.56) and variable standard deviation (S). a. Big clumps, high 
contrast (S=3.75), b. Big clumps, medium contrast (S=1.51), c. Big clumps, low contrast (S=0.5), d. Small 
clumps, high contrast (S=3.52), e. Small clumps, medium contrast (S=1.66), f. Small clumps, low contrast 
(S=0.57), g. Random, high contrast (S=2.62), h. Random, medium contrast (S=1.4) and i. Random, low 
contrast (S=0.72). 

 
 

* Derived from the variogram: semivariance at lags 1, 2 and 3 (lag1, lag2, lag3), sill and 
range. 

Twenty one texture measures derived from the GLCM, SADH (using 3 x 3 pixel window) 
and local statistics were calculated for the simulated images. Variograms were computed, 
fitted with spherical models and used to calculate a further five texture measures. The local 
statistics, GLCM and SADH texture measures were calculated using a code written for 
IDL/ENVI (Rennó et al. 1998) and the variograms were calculated using the software GSTAT 
(Pebesma and Wesseling 1998).  

The mean DN of texture bands created from simulated images and descriptors from the 
modeled variograms were input to an Analysis of Variance (ANOVA), with differences 
assessed at the 5% (á=0.05) level of significance. ANOVA highlighted the ability of any 
given texture measure to differentiate between levels of clumpiness (texture) regardless of 
contrast (tone). 

4. Results and discussion 

This section will review the ability of twenty six texture measures to differentiate between 
three levels of texture and three levels of tone. 

4.1. Texture measures derived from local statistics 

The local statistics mean absolute deviation, median, skewness and kurtosis, did not 
differentiate clumpiness (Table 2). Entropy was sensitive to clumpiness as it resulted in low 
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values for big and small clumps images, and high values for random images (i.e., higher 
heterogeneity). Energy values, however, were less sensitive to clumpiness and contrast. The 
coefficient of variation decreased with image contrast for each clumpiness level making it 
unsuitable for quantifying texture in real data.  

 

Table 2. Texture measures derived from local statistics for simulated images .  

  mad med ent ene ske kur cv 

High contrast 1.98 1.53 0.09 0.34 0.12 -0.51 0.34 
Medium contrast 1.83 1.79 0.11 0.31 0.03 -0.69 0.18 

 
Big 

clumps  
Low contrast 1.72 1.72 0.11 0.30 0 -0.78 0.06 
High contrast 1.83 1.79 0.11 0.31 0.03 -0.69 0.18 

Medium contrast 1.65 1.52 0.15 0.25 0.11 -0.91 0.23 

 
Small 

clumps  Low contrast 1.74 1.72 0.17 0.23 0.13 -0.82 0.08 

High contrast 1.68 1.31 0.22 0.20 0.10 -0.96 0.39 
Medium contrast 1.83     1.70 0.28 0.15 0.22 -0.50 0.18 

 
Random 

 Low contrast 1.76 1.92 0.15 0.28 -0.56 -0.08 0.09 

 

4.2. Texture measures derived from GLCM and SADH  
 
The values of GLCM derived texture measures (x) were normalised ((x – x min) / (x max – x min)) 
for comparison here (Figure 2) and this produced values ranging between only 0 and 1.  

Values of GLCM contrast and entropy were similar and increased with decreasing 
clumpiness (Figure 2). These measures contain information about DN disorder and scatter 
and are, therefore, more likely to differentiate clumpiness than contrast.  

GLCM energy and homogeneity values were similar for big clumps and small clumps 
images (Figure 2). In addition, for both measures random images exhibited minimum and 
maximum values for medium and low contrast, respectively, indicating their sensitivity to 
contrast. The theory underlying these measures is related to uniformity and local similarity of 
pixel values and therefore these measures are unlikely to be suitable for differentiating 
between clumpiness. 

GLCM correlation and chi-square values varied with clumpiness (Figure 2). Contrast 
levels were not distinct, as in big clumps images correlation mean values were similar. High 
correlation values corresponded to low chi-square values and vice versa, indicating the 
different information captured by these two measures. 

The first two measures derived from sum of vector technique - mean and variance - varied 
according to clumpiness and to a lesser extent, contrast. Entropy of the sum vector values 
varied with contrast, especially for small clumps and random images. Energy of the sum 
vector values, however, did not differentiate either clumpiness or contrast. The measures 
derived from the difference vector – mean and variance - did discriminate clumpiness and 
contrast. For entropy and energy of the difference vector, the discrimination of clumpiness 
and contrast was less apparent. Values of entropy and energy of sum and difference vectors 
were similar with the same trends and magnitudes (Figure 2). 
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Figure 2. Normalised mean values of GLCM and SADH derived texture measures from simulated images. 
Codes for the simulated images are: b for big clumps, s for small clumps and r for random; high, med and 
low for high, medium and low contrast. 
 

 
4.3. Texture measures derived from the variogram 
 
A summary of the variogram descriptors is presented in Table 3. The modeled variograms 
contained no nugget variance as there was neither noise nor sub-pixel spatial variability.  

Values of range tended to increase with clumpiness and indicated the size of elements 
within the images. In big clumps images, range corresponded roughly to the size of the 
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clumps (three pixels). For small clumps images ranges were smaller than in big clumps 
images and were indicative of the average spacing of clumps (one pixel). Random images 
presented decreasing values of range for increasing contrast levels. Range was the only 
variogram-derived measure that was invariant with contrast (Table 3). 
 

 
Table 3. Semivariance at lags 1, 2 and 3, sill and range of variograms produced from simulated images 
and fitted with spherical models.  

 

  lag1 lag2 lag3 sill range 
High contrast 4.8 9.34 13.76 15.17 3.62 

Medium contrast 1.2 2.03 2.65 2.34 2.56 
 

Big 
clumps  Low contrast 0.12 0.21 0.3 0.26 2.57 

High contrast 13.96 13.72 13.7 12.38 0.97 
Medium contrast 2.16 3.59 2.47 2.77 1.7 

 
Small 

clumps  Low contrast 0.31 0.48 0.29 0.33 1.26 
High contrast 9.14 5.27 7.55 6.87 0.97 

Medium contrast 1.89 2.02 1.94 2.02 1.27 
 

Random 
 Low contrast 0.45 0.58 0.49 0.51 1.42 

 

Semivariance values decreased with decreasing contrast and had increasing values with 
lag for big clumps images. For small clumps and random images there was no pattern and the 
semivariance either increased or decreased with lag. Sill values differentiated between 
contrast levels and indicated the total variance of the images; they were high for high contrast 
and decreased for medium and low contrast images.  
 
 
4.4. Statistically significant differences in texture for different levels of clumpiness and 
contrast 
 
Analysis of variance (ANOVA) was used to determine if differences in the values of texture 
measures were statistically significant for different levels of contrast and clumpiness (Table 
4). 

None of the texture measures were able to discriminate contrast and clumpiness 
concomitantly. Contrast (tone) was differentiated by five texture measures: coefficient of 
variation (cv), semivariance at lags 1, 2 and 3 and variogram sill.  Cv has been shown to be a 
useful measure for discriminating between tropical forest regeneration stages (Luckman et al. 
1997, Yanasse et al. 1997) and boreal forest types (Kurvonen and Hallikainen 1999). 
Semivariance estimates have been used for the successful classification of tropical vegetation 
(Miranda et al. 1998). Sill is a measure of image variance and was expected to vary according 
to contrast (Cohen et al. 1990).  

Local statistics entropy (ent) and GLCM derived measures of contrast (conh), entropy 
(enth), correlation (cor), chi-square (chi) and mean of the sum vector (sme)  differentiated 
clumpiness. Contrast, entropy and correlation are among the more common measures that can 
be derived from the GLCM (Baraldi and Parmigiani 1995) and have been used extensively for 
texture analysis in forest mapping (Ulaby et al. 1986, Kushwaha et al. 1994), land cover 
mapping (van der Sanden and Hoekman 1999) and crop discrimination (Soares et al. 1997). 
Clumpiness (texture) was also differentiated by range, a measure of image “coarseness” and 
also of the size of image elements (Treitz and Howarth 2000). 
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The remaining measures did not show any significant sensitivity either to clumpiness or 
contrast in the simulated images studied here. 

 
Table 4. P-values for differences in contrast and clumpiness levels. The statistically significant values at  
á =0.05 are indicated in bold. 

 

TEXTURE  

MEASURE 

CONTRAST CLUMPINESS TEXTURE  

MEASURE 

CONTRAST CLUMPINESS 

mad 0.595 0.462 sme 0.942 0.029 
med 0.300 0.973 sva 0.546 0.524 
ent 0.753 0.044 sent 0.083 0.314 
ene 0.733 0.078 sene 0.248 0.759 
ske 0.342 0.688 dme 0.070 0.612 
kur 0.789 0.463 dva 0.082 0.617 
cv 0.020 0.865 dent 0.269 0.196 

conh 0.838 0.031 dene 0.519 0.198 
enth 0.974 0.049 lag1 0.013 0.736 
eneh 0.627 0.664 lag2 0.011 0.734 
hom 0.105 0.485 lag3 0.001 0.886 
cor 0.904 0.006 sill 0.003 0.855 
chi 0.943 0.012 range 0.991 0.005 

 

Summary 

The experiment presented here highlighted the spatial variation content of imagery and 
therefore the need to consider texture as additional information when analysing the 
backscatter/biomass relationship in SAR images. Simulated images proved to be a useful tool 
for standardising the evaluation of twenty six texture measures. 

The seven measures that were sensitive to clumpiness (texture) but not contrast (tone) 
were local statistics entropy (ent), GLCM contrast (conh), GLCM entropy (enth), GLCM 
correlation (cor), GLCM chi-square (chi), SADH mean of sum vector (sme) and variogram 
range (range). These measures have potential for strengthening the backscatter/biomass 
relationship at high levels of biomass. 
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