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Abstract. In this paper we apply a Neural Network (NN) to reduce image dataset, distilling the massive datasets 
down to a new space of smaller dimension. Due to the possibility of these data have nonlinearities, traditional multi-
variate analysis, like the Principal Component Analysis (PCA), may not represent reality. Alternatively, Nonlinear 
Principal Component Analysis (NLPCA) can be performed by a NN model to fulfill that deficiency. However, when 
the dimension of the image increases, NN may easily saturate . This work presents an original methodology associ-
ated with the use of a set of cascaded multi-layer NN with a bottleneck structure to extract nonlinear information of 
the large set of image data. We illustrate its good performance with a set of tests against comparisons using this 
methodology and PCA in the treatment of oceanographic data associated with mesoscale variability of an oceanic 
boundary current. 
Keywords: neural network, image processing, PCA, cascaded-NLPCA. 
 

1. Introduction 

A general problem faced in computer science is to reduce the dimensions of a large datasets, like 
image datasets, in order to make sense of the bulk information contained in them. 

A classical approach to go about this problem is to use linear solvers based on multivariate 
statistics like the Principal Component Analysis (PCA), Preisendorfer (1988). The PCA finds the 
eigenmodes of the data covariance matrix and, with this result, one is able to reduce dimensional-
ity and analyze the main patterns of variability present in the dataset. The fact that PCA solves 
the eigenmode problem using a linear approach may lead the result to be an oversimplication of 
the variability contained in the dataset, especially if the processes ruling this variability have a 
nonlinear nature. The artificial Neural Network approach, called Nonlinear Principal Component 
Analysis (NLPCA), has been applied by several authors as a tool to try to overcome the limita-
tions imposed by linear PCA, Lek(1999), Monahan (2000). The main advantage besides being 
able to take nonlinearity into account is that the computational process can occur unbiased by our 
knowledge about the variability aspects that ultimately control the study case. 

However, NLPCA brings together an important limitation: saturation phenomena presented 
in Neural Networks (NN) prevents the use of this approach to handle large datasets. Hence, data-
set forming large matrices (or data units), like images, can not be treated by Neural-based 
NLPCA. 

When the dimension of image is much bigger with respect to the number of temporal samples 
available to analyse, a pre-processing stage is thus necessary to extract the relevant information 
backbone prior to the NN run. For instance, a PCA can be used as a dimension reductor, leaving 
the NN to work over a few modes only, Hsieh (2001). In this case, NLPCA runs with linearly 
reduced input patterns, thus limiting the method's potentials. 

Hence, this work presents an original approach, called Cascaded-NLPCA (C-NLPCA), 
whose main purpose is to eliminate the pre-filtering stage, allowing the nonlinear PCA of the 
whole image. Our approach does not impose limitations associated with the original dimensions 
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of the image, allowing important result gains. The C-NLPCA can be used in a set of different 
domains. Particularly, we are interested in evaluating the potential of the approach to investigate 
the satellite image variability in oceanic areas dominated by strong mesoscale dynamics. The 
results presented here are compared with the classical PCA technique and NLPCA, highlighting 
the advantages and disadvantages of C-NLPCA from the computational and physical sense. 

The text is structured with the following section presenting feature extraction problem of 
large dataset. Next, the theory of PCA and NLPCA is mentioned. The paper core is presented in 
the fourth section, which details our approach, giving a formal description of the Cascaded 
Nonlinear Principal Component Method. It is followed by section 5, which presents our satellite 
images used to validate our approach, testing C-NLPCA against the PCA. Finally, last section 
contains the general conclusions and suggestions for follow-up studies. 

2. Feature Extraction Problem 

2.1. Image Vector 

Independently of their nature, temporal data samples can be viewed as a vector. For instance, we 
can consider the dataset as a set of images, whose width and height associated are w and h pixels 
respectively. Thus, the number of components (pixels) of this vector will be w * h. Each pixel is 
coded by one vector component. The construction of this vector, called image vector X

ρ
, from an 

image is performed by a simple concatenation - the rows of the image are placed each beside one 
another, Romdhani (1999). 

2.2. Image Space 

The image vector belongs to a space, called image space, which is the space of all images whose 
dimension is w * h pixels. Thus, when plotting the image vectors they tend to group together to 
form a narrow cluster in the common image space. This is shown in Figure 2, where hypothetic 
image series with 3 pixels are showed. Similar images with common features (i.e. land masses, 
clouds, equal temperature zones, etc in oceanographic domain) are grouped together. 

 
Figure 1: A set of Image Vectors, ( ) 321 xxxtX ++=

ρ
 , in a Image space with principal  

orthogonal axes (a1 and a2). 

3. Principal Component Analyses Methods 

3.1. Principal Component Analysis 

Due to the cluster feature containing our image vectors, the full image space may be not an opti-
mal space for our data description. This happens because we can have similarities (redundant 
information) between same components of different images. Thus, for several domains it can be 
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interesting to build a new space, lower in size than the original, which better describes the pat-
terns contained in the image dataset. 

The base vectors of this new space are called the Principal Components. Of course, using 
every pixel may bring redundant information, as each pixel depends on its neighbors. So if the 
dimension of the original image space is w * h, then the dimension of the new space is less than 
the dimension of the original image space. Thus, the goal of the PCA is to reduce the dimension 
of the original set or space so that the new basis better describes the typical îmodelsî of the set. 
PCA aims to catch the total variation in the set of images, and to explain this variability by few 
modes. The new basis vectors (axes) will be constructed by a linear combination (thus they are 
essentially orthogonal). Components in this new basis will be uncorrelated and will maximize the 
variance accounted for in the original variable. Those axes are shown in Figure 2. We can see that 
the variance of the data is a maximum in the direction a1 and so defined as first principal compo-
nent of variability. The second direction that yields the largest variance of the data, provided that 
it is orthogonal to a1, is a2. 

Theory of PCA. Let ( ) pxxtX ,...,1=
ρ

 be a dataset, with dimension p , where each variable 
( )pixi ,...,1, = . is a time series containing n observations. PCA transformation is given by a linear 

combination of xi, time function u, and an associated vector a: 
( ) ( )tXatu

ρ
*= ,                                                            (1) 

so that 

( ) ( ) 2
tautX −

ρ
,                                                       (2) 

is minimized ( ...  denotes a sample or time mean). Here u , called the first principal compo-
nent (PC), is a time series, while a , the first eigenvector of the data covariance matrix, often de-
scribes a spatial pattern. From the residual, auX −

ρ
, the second PCA mode can be obtained, and 

so on for higher modes (see Hsieh (2001) for more details). 

3.2. The theory of NLPCA 

PCA only allows a linear mapping from X
ρ

 to u. On the other hand, NLPC is obtained using a 
multi layer Neural Network, see figure 2, Kirby (1990). To perform NLPCA, the NN contains 3 
hidden layers of neurons between the input and output layers. Hidden layers have nonlinear acti-
vation functions between the input and bottleneck layers and between the bottleneck and output 
layers. Hence, the network models a composition of functions. The five-layer NLPCA network 
has p nodes in the input layer, r nodes in the third (bottleneck) layer, and p in the output layer. 
Output layer must reproduce the input signals presented to the network. The nodes in layer 2 and 
4 must have nonlinear activation functions, and the nodes in layer 1, 3 and 5 use linear activation 
functions. NLPCA network allows data compression/reduction because the p-dimensional inputs 
must pass through the r-dimensional bottleneck layer before reproducing the inputs. Once the 
network has been trained, the bottleneck node activation values give the scores. 

Let rpf ℜ→ℜ: denotes the function modeled by layers 1, 2 and 3, and let prs ℜ→ℜ: de-
notes the function modeled by layers 3, 4 and 5. Using this notation, the weights in the NLPCA 
network are determined under the following objective function: 
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                                                              (3) 
e fi 

, where 'X
ρ

 is the output of the network. The relation 1 is now generalized to ( )Xfu
ρ

= , where f  
can be any nonlinear function explained by a feed-forward NN mapping from input layer to the 
bottleneck layer and instead of 2, '

ll XX
ρρ

− is minimized by nonlinear mapping functions, 

( )usX ='
ρ

. The residual '
ll XX
ρρ

− , can be input into the same network to extract the second 

NLPCA mode, and so on for the higher modes, Monahan (2000). 

 
Figure 2: NLPCA: Neural Network to map Nonlinear Components. 

4. C-NLPCA: Cascaded Nonlinear Principal Component Analyses 
When it is necessary to run NLPCA with large dimension datasets, like images, there is a notice-
able increase of parameters (weights) associated with the neurons of the NN, thus leading to the 
necessity to have a bigger number of temporal samples, so that this value can be near to the pa-
rameters of the NN, Hsieh (2001). It is known that sometimes it is not possible to attend this re-
quirement even if one accepts the saturation and poor dimensional reduction risks. Moreover, the 
addition of more samples increases in an expressive way the computational overhead to conclude 
the analyses. 

Thus, when the original dataset have many dimensions, several authors opt to filter the data 
before the NLPCA analyses, like the use of PCA reduction techniques, Botelho et al. (2003), 
Hsieh (2001). Using the former approach, the simplification introduced by the use of linear PCA 
analyses can lead to erroneous outputs or, at least, can produce coarser results. 

Our C-NLPCA has the aim to allow the direct and totally nonlinear analyses of high dimen-
sion dataset, using a cascaded set of successive NLPCAs, see figure 3. The architecture is com-
pose by two main stages: reduction and expansion. Images are decomposed into a set o small 
windows, which will be reduced and grouped by successive NLPCAs at reduction stage. A bot-
tleneck NLPCA gives the final principal component. This value is expanded by the second stage 
(expansion stage), resulting in a output of the same dimension of the original dataset (spacial ex-
pansion). 

4.1. Obtaining the C-NLPC - The Reduction Process 

C-NLPCA assumes that p’ is the ideal dimension for the input data. The ideal concept is associ-
ated with the relationship between parameters number (weights) and the number of temporal 
samples. Thus, we divide the original input image with dimension p into smaller windows with 
dimension p’. These windows are used directly as input of a first layer of NLPCAs. Each C-
NLPCA, constrained by the saturation requirements, finds a local principal component (local 
reduction) of one window. The resulting patterns (reductions) are used as input to a new layer of 
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C-NLPCA. This process is repeated n times until only one pattern is left, thus giving the final 
reduction of whole original dataset. Despite during the first step the windows are independently 
analysed, in the second step the neighbor relations are considered, ensuing that the results are 
grouped in succession. 

We consider the window ( )tvecW  as a subset of consecutive pixels of the image vector, 
( )tX
ρ

: 
( ) ( )[ ]'/1| 1 ppmitWtX i =<<=

ρρ
,                                       (4) 

with: 
( ) ( ) jitWtW ji ≠∀=∩ ,0

ρρ
                                            (5) 

For each component ( )tWi

ρ
 of ( )tX

ρ
, we process the nonlinear analyses (section 3.2) with a 

standard NLPC network. Each network associated with ( )tWi

ρ
 is called NLPCA. They compose 

the first layer with m1 = p/p’ networks. The bottleneck results ( )tui  of each window NLPCi are 
grouped into a new second layer of NLPCAs. Notice that, the number of NLPCAs of the second 
layer is m2=m1/p’1. 

The process is repeated up to layer n composed by only one NLPCA network. The output of 
the bottleneck neuron of this only NLPCA is the nonlinear principal component, ( )tui of the 
original large dataset. 

4.2. Obtaining C-NLPCAs - The expansion Stage 

The second role of the Principal Component Analyses, called expansion, is to obtain the data as-
sociated with each principal component reduction (PC, C-NLPC) in the original dimension of the 
image (PCA, C-NLPCA). Moreover, each time when a principal component k is calculated and 
we desire to obtain the next (k+1), the expansion process is also necessary to calculate the resi-
dues associated with k, which will be the input to the (k+1) C-NLPC analyses. 

Hence, due to the cascading process, we have lost the original dimension of the input image, 
it is then necessary a method to obtain the expansion of the reduction. Expansion Stage is trained 

                                                 
1 We use sub-index 1,2 to describe, respectively the first and the second layer of the cascade). 
 

 
Figure 3: C-NLPCA: a set of layers grouped in Reduction and Expansion Stages. The 
pointed out neuron gives the pattern associated to the reduction of the original dataset. 
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to expand the nonlinear principal component, ( )tun , in a set of nonlinear expanded images. In 
fact, we propose a bottleneck layered structure to obtain the reduction/expansion of NLPCs. 

Expansion layers are symmetric with reduction layers, resulting in a total of (2*n-1) layers. 
They are composed by simple backpropagation networks BPNN (without bottleneck neuron). The 
input of each BPNN is an output of the last layer. We use the original propagated image to train 
the desired outputs of BPNN  networks. 

Training BPNNs: Each resulting output n
ix  of the bottleneck NLPC layer n is used as input to 

train its respective BPN(I
(n+1) in the next layer (n+1). The desired output is the input of the re-

spective layer (n-1) in reduction stage. This process is repeated up to (2n-1) layer, which has as 
desired output each pixel of original image. 

Thus, the expanded image represent the original input taking into account only the current 
principal component. We use all components of the original dataset, their neighbors relations and 
temporal variabilities. The method can be applied independently of the dataset dimension size. It 
also maintains the nonlinearity associated with NN, avoiding the saturation restriction associated 
with them. 

5. Applying C-NLPCA 

We have tested our approach in a set of Sea Surface Temperature (SST). In order to analyze these 
data, researchers have generally adopted classical multivariate statistical methods, like PCA. 
However, related methods may produce an oversimplification of the dataset being analyzed by 
assuming that linear phenomena are dominant. Thus, if the data contain nonlinear lowerdimen-
sional structure, it can not and will not be detectable by the PCA. Moreover, these images com-
pose a large dataset, saturating and preventing the usual NLPCA methods. Thus, SST satellite 
images seem to be an ideal application to justify and test C-NLPCA approach. 

5.1. SST Satellite Images Series 

The data used are a series of three and a half years Sea Surface Temperature (SST) satellite im-
ages (from 1991 to 1994) of the southwestern Pacific Ocean. These images have been derived 
from the full resolution images (1 km x 1 km) recorded by the Advanced Very High Resolution 
Radiometer (AVHRR) on board of the National Oceanic Atmospheric Administration (NOAA) 
polar orbiting satellites. Data have a 9 km x 9 km spatial and 10 days temporal resolution 
(enough for the study of mesoscale dynamics). The dataset dimension is 60 x 60 pixels, Mata 
(2000). 

5.2. Tests and Discussion 

The dataset has (60x60) 3600 spatial variables and 128 time points. In this area, one can expect 
that the first 2 or 3 principal components would be enough to explain almost the totality of the 
data variance. Indeed, that is confirmed by computing the PCA modes from the dataset, which 
revealed that the eigenvalues associated to spatial modes 1, 2 and 3. Thus, we are going to 
search/analyse only the firsts mode 1 and 2. 

The first 3 PCs (time series) computed from the dataset are shown in Figure 4. Looking at 
this figure, one can perceive the ample dominance of the first mode variability over the higher 
ones. Having a frequency of about 1 year, the first mode has a clear physical meaning in ocean-
ography, which is related to the seasonal heating and cooling of sea surface waters following the 
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annual cycle of solar radiation input. The second and third modes are not that straightforward to 
interpret. They seem to be dominated by a higher than seasonal frequency, however, this signal 
seems also contaminated by a long term component. This is a clear sign of the inability of the 
PCA to separate in different modes signals that either are typically nonlinear, not dominant in the 
series or have similar energy levels (contribute equally to the total variance). The result is a blend 
of processes in a single mode and thus making almost impossible for one to extract any physical 
sense out of this mode. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
C-NLPCA method was implemented in c++. To avoid local minimum, a set of 20 CNLPCAs 

process the same dataset. We eliminate the worst results. Each C-NLPCA is initialized with ran-
dom weights, which are changed in 40.000 iterations. Each temporal image is decomposed into a 
subset of windows to feed C-NLPCA network (p’=24, NLPCAs with 2 hidden neurons). It needs 
5 layers (2 for reduction and 2 for expansion). 

As the solution of the first PCA mode is linear, and it dominates unquestionably the dataset 
variability (the seasonal oscillation pattern of the sea surface temperature), one would expect that 
the first principal component of the C-NLPCA network would have quite a similar pattern. In-
deed, that is confirmed in Figure 5, where it is clear the excellent agreement between the PC1 and 
C-NLPC1 functions. 

Conversely, one can expect different patterns when comparing the PCA solution for the 
higher modes (mode 2 for example) with the correspondent C-NLPCs. 
After computing C-NLPC2, it is plotted together with PC2 in Figure 6. One can see how different 
they look and, taking advantage of the use of normalized units, it is clearly notable that PC2 con-
tains a combination of a higher frequency phenomenon (about 140 days) with a lower frequency 
one (about 3 years). The 140 days signal should be basically composed by marine mesoscale 
phenomena while the 3 years one should be related to a residual of the interannual signal in the 
sea surface temperatures due to El Niño events, which can be quite intense in this part of the 
ocean. The blend of signals of such a different nature in only one PCA mode is related to the fact 
that those phenomena are essentially nonlinear and also contribute similarly to the total variance, 
hence making the PCA linear approach only a crude approximation of the observed variability.. 

In other hand, C-NLPC2 describes a pattern with only some isolated peaks that have fre-
quency of about 120-180 days, and showing no clear evidence of another signal being superim-
posed (low frequency phenomena). The latter reinforces the hypothesis that NLPCA deals better 
with the higher mode variability due to an enhanced capability in isolating the signals of higher 

Figure 4: First three PC from the 
PCA: PC1 (with *), PC2 (dashed 
line) and PC3. 

 
Figure 5: First PC from the PCA 
(with *) and from C-NLPCA 
(dashed line). Due to linearityof the 
first mode, both method present the 
same results 

Figure 6: PC2 from the PCA 
(with*) and C-NLPC2 (dashed 

line) computed using the C-
NLPCA network 
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modes, and thus suggests that C-NLPC2 may be representing a single oceanographic process. 
Indeed, several studies support the above assertion as they have found that besides the seasonal 
variability, the mesoscale dynamics is a quite important feature in that ocean area, Mata (2000). 
These authors also emphasize that the measoscale variability is basically due to the shedding of 
large eddies by the East Australian Current to the south of 33. S. During those times the Current 
would leave from its ìnormalî state and move about the study domain (mainly retract to the 
north), thus creating a sea surface temperature anomaly possible to be captured by the NLPCA 
analysis. The NLCP2 function depicts quite well this pattern, as it remains most of the time 
around the zero line and shows spikes that may well represent the eddy shedding events. The 
above studies about the East Australian Current also point out that the Current sheds between 2 - 
4 eddies per year, but can also experience periods of lower activity, Mata (2000), pattern also 
matched by the NLPC2. Thus, we believe that C-NLPC is producing significantly better results 
than the linear PCA, further assessment of the higher modes is underway. 

6. Conclusions 

In the present study, we propose an original method to reduce the dimension of large image data-
set, obtaining principal components of them. We use a cascaded Neural Network in a bottle-
necked structured to obtain dimension reduction, giving the principal components of the data 
variability. The same structure is also used to expand the data from obtained principal compo-
nent. The method is applied to study the mesoscale variability of an oceanic boundary current. As 
results, the PCA can not fully isolate those low frequency modes from others and the computa-
tion leads to time series containing more that one signal associated with distinct physical proc-
esses. On the other hand, the C-NLPCA network has demonstrated the capability of isolating the 
second mode of variability which seems to be related with the mesoscale variability of the 
oceanographic scenario, thus encouraging further investigation on others application domains.  
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