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Abstract. Simulating urban land use change through stochastic methods invariably demands the assessment of 
spatial land use transition probabilities. This has been accomplished to date mostly by empirical calculations and 
statistical linear methods. In the present work, we introduce a framework for simulating urban land use dynamics 
based on the estimation of land use transition probabilities through logistic regression. These probabilities drive 
a cellular automaton (CA) simulation model, based on eight cell Moore neighborhoods and stochastic transition 
algorithms. A medium-sized town in the west of São Paulo State, Bauru , was adopted as case study. Different 
simulation outputs for the case study town in the period 1979-1988 were generated, and statistical validation 
tests were then conducted for the best results, employing a multiple resolution fitting procedure. 
 
Keywords: urban modeling, land use dynamics, logistic regression, cellular automata, town planning. 
 

1. Introduction 

Cellular automata (CA) models have found applications in diverse fields, ranging from 
statistical and theoretical physics to land use and land cover change, traffic engineering and 
control, diseases spread, behavioral biology, amongst others. The basic idea of these models is 
very simple: in a gridded space (raster) a series of transition rules are enforced to govern the 
state of a randomly placed cell depending on the configuration of its neighborhood.  The 
simplicity, operational and mathematical tractability of these models as well as their 
surprising capacity to reproduce complexity embedded in processes of spatial change as 
reflected in emergent phenomena account for their wide popularity and use in the applied 
sciences. 

More recently, cellular automata have found their way into 2-D applications in urban 
modeling (Batty, 2000). There are currently some twenty or more applications of CA to cities 
such as the diffusion or migration of resident populations (Portugali et al., 1997) the 
competitive location of economic activities (Benati, 1997), the joint expansion of urban 
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surface and traffic network (Batty and Xie, 1997), generic urban growth (Clarke et al., 1997), 
urban land use dynamics (White and Engelen, 1997), and so forth. 

Specifically regarding urban land use dynamics, CA models can be basically subdivided 
into either predominantly deterministic or stochastic. A good representative of predominantly 
deterministic CA models is the urban growth study for the San Francisco Bay area, conducted 
by Clarke et al. (1997). Although this model incorporates a certain randomness in selecting 
the cells for urban growth and in promoting the spread of growth seeds, its transition rules are 
fundamentally deterministic in the sense that the cell suitability for being urbanized is not 
dependent upon probabilistic methods. 

An illustrative example of the second category of models is the SIMLUCIA, conceived 
by White et al. (1997). The stochastic feature of this model is present in the calculation of 
land use transition probabilities for each cell, which is basically a function of the cell 
suitability for the new activity in question and its relative accessibility for such an activity. 
The formula adopted for the probabilities estimation is a combined linear product of factors 
affecting land use change plus a disturbance term.  

Logistic regression has been used for simulating urban land use change in a few cases. 
Morisette et al. (1999) and Jianquan and Masser (2002) conduct modelings of urban 
development patterns, which are not CA-based and deal with only two categories of land use 
(urban and non-urban). Tang and Choy (2000) and Wu (2000) applied the logistic regression 
method to more specific land use transition issues, such as office development and industrial 
firm location respectively, but their experiments are not carried out in CA environments 
either. 

This paper addresses the simulation of land use change for sub-categories of urban land 
use (e.g. residential, commercial, industrial, etc.) by means of logistic regression and CA-
based modeling. The following section introduces the study area and pre-processing 
techniques. The third section presents exploratory analysis procedures and approaches the 
intervening factors in urban land use change. In the forth section, the theoretical structure of 
the model is presented, providing an overview on the logistic regression method and 
explaining how it is used for determining transition probabilities governing changes in land 
use as functions of a variety of socio-economic and infrastructural factors. Section five 
discusses questions related to model implementation and calibration. In section six, the 
simulation results are presented and explained in the context of urban land use dynamics. 
Finally, section seven is reserved for final comments and directions for future work. 

2. The Study Area 

This simulation model is developed for the city of Bauru, which is located in West São Paulo 
State, and in 2000 had a rapidly growing population of 309,640. The period for which the 
model is fitted is from 1979 to 1988 when the population grew from 179,823 to 232,005. 

The city maps provided by the Bauru local authorities presented inconsistencies due to the 
fact that illegal settlements are not shown on the official maps, and not all of the legally 
approved settlements drawn have been in fact implemented. Moreover, some urban zones 
refer to areas which are not yet occupied, and some other zones categories do not correspond 
to the prevailing use indeed encountered within their limits, reflecting just the local officials  ́
intention for their future use. In this way, satellite imagery arise as a feasible solution for the 
identification of urban settlements actually existent, as well as for the delineation of the true 
urban occupation boundaries of the case study town. 

In this way, the initial (1979) and final (1988) land use maps were subjected to a 
reclassification of zones according to their dominant effective use; residential zones of 
different densities were all reclassified to simply residential, and special use and social 
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infrastructure were reclassified to institutional. Eight land use zone categories were thence 
defined, namely: residential, commercial, industrial, services, institutional, mixed use, 
leisure/recreation, and the all-embracing non-urban land use. Districts segregated from the 
main urban agglomeration by more than 10 km were judged outside the simulation area, and 
the traffic network was not considered to be at a fine enough scale to be represented as a land 
use. 

The land use maps for the two time slices are shown in Figure 1 (a) and (b). The changes 
between 1979 and 1988 are shown in Figure 2 (a) with the most significant land use change – 
from non-urban to residential use – shown in Figure 2 (b). All data used in this experiment 
were represented at 100 m x 100 m grid square, pre-processed using the SPRING GIS (from 
the Division for Image Processing of the Brazilian National Institute for Space Research – 
DPI-INPE) and IDRISI (from Clark University). 

 
 
 

 
 
 
 
 
 
                                                                            

                                                                                                                   N                                                                                                            N 

 
 
Figure 1. (a) Land use in Bauru in 1979 (left) and (b) land use in Bauru in 1988 (right). Residential use is yellow, 
commercial use is orange, institutional use is blue, industrial use is purple, services corridors are red, 
leisure/recreation is green, mixed use is brown, and non-urban use is white. 
 
 
 
 
 
 
 
 
 

 
Figure 2. (a) Land use change from 1979 to 1988 (top left) and (b) Map showing the transition non-urban to 
residential land use during the period 1979-1988 (bottom right). 
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3. Exploratory Analysis and Selection of Variables 

From the map of land use changes from 1979 to 1988, shown in Figure 2 (a), obtained 
through a cross-tabulation operation between the initial and final land use maps shown in 
Figure 1, five types of transitions were observed and are listed in Table 1. 
 
Table 1 
Observed land use transitions 
 
Notation                   Land Use Transition 
 
NU_RES                   Non-Urban to Residential  
NU_IND                   Non-Urban to Industrial 
NU_SERV                   Non-Urban to Services 
RES_SERV                   Residential to Services 
RES_MIX                   Residential to Mixed Use 
 
 

To explain each of the five existent land use transitions, twelve variables were selected 
from an initial bunch of over forty variables regarding infrastructural and socio-economic 
aspects of Bauru. Examples of maps of independent variables are shown in Figures 3 (a) and 
(b). 
 
 
 
 
 
 
 
 
Figure 3. (a) Existence of social housing units  and  (b)  Map of distances to industrial zones (right). 
 

The map shown in Figure 3 (a) is a typical example of a discrete or categorical variable, 
which assumes values 1 for those cells where social housing is found and 0 otherwise. The 
map of distances in Figure 3 (b) can be either treated as a continuous variable (real values 
grid) or a categorical one (ranges of distances). In the particular case of this experiment, all 
variables related to maps of distances were treated as categorical, since practically all of them 
presented a non-linear and/or multimodal behavior in relation to the respective land use 
transitions. Handling this information as a continuous variable implies a great data 
heterogeneity, what would certainly bring about noise in the simulations and harm the model 
calibration. 

Empirical procedures were used for variables selection, like the visualization of distinct 
variables superimposed on the final land use map, what aimed at identifying the set of those 
ones more meaningful to explain the five different types of land use change. Another auxiliary 
method was the analysis of boxplots generated by each selected independent variable versus 
the respective land use transition. Figures 4 (a) and (b) shows examples of boxplots for the 
variables presented in Figure 3 (a) and (b). It is observable for the first case that the majority 
of the cells where the transition from residential to mixed use occurs coincide with the cells 
where social housing units are also found.  In  the  second  case,  the  boxplot  shows  that  the 
transition from non-urban to industrial use takes place in the closest areas from the already 
existent industrial zones. Both types of analyses (visualization of maps overlay and boxplots) 
led to a preliminary selection of independent variables, as shown in Table 2. 
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Figure 4. (a) Boxplot of the transition residential to mixed use versus social housing (left) and (b) Boxplot of the 
transition non-urban to industrial use versus distance to industrial zones (right). 
 

Table 2 
Selection of variables determining land use change 
 
Independent Variables (Notation)                            NU_RES         NU_IND        NU_SERV      RES_SERV     RES_MIST  
 
Area served by water supply (water)                                                                                                                                       ♦  
Medium-high density of occupation: 25% to 40% (mh_dens)                                                         ♦  
Existence of social housing (soc_hous)          ♦  
Distances to ranges of commercial concentration (com_kern)                         ♦     ♦  
Distances to industrial zones (dist_ind)                ♦    
Distances to residential zones (dist_res)       ♦  
Distances to peripheral residential settlements (per_res)    ♦  
Distances to isolated institutional use (dist_inst)    ♦  
Distances to main existent roads (exist_rds)     ♦  
Distances to the service and industrial axes (serv_axes)               ♦    ♦             ♦  
Distances to planned roads (plan_rds)          ♦  
Distances to peripheral roads (per_rds)     ♦        ♦  
 
 

Have the variables been selected, it becomes then necessary to check for their spatial 
dependence or association. This is done for all possible pairwise combination of variables 
existent in each of the five land use transitions separately. For this end, the Cramer´s statistic 
(V) and the Joint Information Uncertainty (U) indices (Bonham-Carter, 1994) were used. 
Values less than 0.5 suggest less association rather than more. As none of the association 
values surpassed this threshold, no variables initially selected for the modeling experiment 
have been discarded from the analysis. 

4. Methods: A Logistic Regression-Based Cellular Automaton Model 

4.1 Global Transition Dynamics 

Probabilities of land use transition were initially calculated for the whole study area in 
absolute terms, i.e. without the influence of socio-economic or infrastructural factors. This has 
been accomplished through a cross-tabulation operation between the initial and final land use 
maps shown in Figure 1. The probabilities estimates are presented in Table  3. 

 
Table 3 
Global transition probabilities for Bauru, 1979-1988 
 

Land use  Non-Urban        Residential Commercial     Industrial   Institut  Services    Mixed  Leis/Rec 

Non-Urban                    0.9171331 0.0697519 0 0.0095301              0 0.0035848           0 0 
Residential  0 0.9379833             0 0 0 0.0597520           0.0022647        0 
Commercial  0 0 1 0 0 0 0 0 
Industrial    0 0 0 1 0 0 0 0 
Institutional  0 0 0 0 1 0 0 0 
Services 0 0 0 0 0 1 0 0 
Mixed 0 0 0 0 0 0 1 0 
Leisure/Rec  0 0 0 0 0 0 0 1 
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4.2 Local Transition Dynamics 

A customized reckoning of transition probabilities was then conducted at the cellular level, 
taking into account the local socio-economic and infrastructural variables. Each land use 
transition was separately modeled in these statistical calculations, what complies with the 
algorithmic logic of the modeling software, in which each transition has its calibration 
parameters  individually adjusted.  

The binary logistic regression model has been adopted. Each transition is coded as 1 and   
permanence in the original state as well as changes to uses other than the one considered in 
the transition were coded as 0. Thus, a change in the cell land use during the simulation period 
is dependent on its initial state as well as on its Pij (x,y), which is the probability that a cell at 
position (x,y) will change from state i to state j. The dependence of the local transition 
probabilities Pij (x,y) on each independent variable Vn (x,y) is estimated by the logistic model: 

 
 
                (1) 
 
 
what implies that 
 
                           (2) 
 

The logistic regression models for each of the five transitions included the sets of 
variables as shown in Table 2 and excluded the least significant variable (if any) at each step. 
Significance was based on the Wald chi-square test and the G statistic. The model is accepted 
when all independent variables are significant at the 0.05 level and the loss of the G statistic 
remains lower than 5%. The parameters values for each transition are shown in Table 4 and 
were obtained through the maximum likelihood method using the statistical package 
MINITAB, release 13.0. Although the variables “dist_res” and “mh_dens” were not 
significant at the 0.05 level, they were kept in the model in view of their effective contribution 
for explaining the transitions “nu_serv” and “res_mix”, respectively.  According to Hosmer 
and Lemeshow (1989), “we must not base our models entirely on tests of statistical 
significance, since there are numerous other considerations that will influence our decision to 
include or exclude variables from a model”. 
 
Table 4 
Results of the logistic regression analyses for Bauru, 1979-1988 
 

VARIABLES  Transition NU_RES  Transition NU_IND  Transition NU_SERV  Transition RES_SERV  Transition RES_MIX 
 ßk P ßk P ßk P ßk P ßk P 

Constant (ß0) 7.646900 0.000 5.274530 0.000 4.865300 0.000 -1.551900 0.000 3.901200 0.000 
water # # # # # # 1.708810 0.000 # # 
mh_dens # # # # # # # # 0.383300 0.232 
soc_hous # # # # # # # # -1.068800 0.000 
com_kern -0.924990 0.000 # # -1.461660 0.000 # # # # 
dist_ind # # -1.048320 0.000 # # # # # # 
dist_res # # # # 0.027680 0.442 # # # # 
per_res -0.392090 0.000 # # # # # # # # 
dist_inst -0.405525 0.000 # # # # # # # # 
exist_rds 0.051476 0.000 # # # # # # # # 
serv_axes # # -0.741110 0.000 -0.974470 0.000 -0.929550 0.000 # # 
plan_rds # # # # # # # # -1.865200 0.000 
per_rds -0.309469 0.000 # # # # # # -0.521040 0.000 
 RESULTS    FOR    THE    TESTS    OF    GOODNESS – OF - FIT 

Tests Chi-square P Chi-square P Chi-square P Chi-square P Chi-square P 
Pearson 41,202.475 0.000 13,639.316 0.000 938.120 0.000 338.064 0.000 422.206 0.000 
Deviance 30,435.653 0.000 6,055.790 0.000 774.369 0.000 341.693 0.000 328.558 0.000 
Hosmer-Lem. 613.082 0.000 258.618 0.000 44.667 0.000 247.916 0.000 1.653 0.438 

P i j (x,y) =       e
L

                  1 + e
L

L = log  •     P i j (x ,y)    �  =  ß0, i j + ß1, i j V1 ,  x y + ... + ßk , i j Vk ,  x y

               (1 - P ij (x,y) )
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5. Model Calibration 

By means of the parameters estimated in the logistic regression analyses, the simulation 
model – DINAMICA – developed at the Center for Remote Sensing of the Federal University 
of Minas Gerais (CSR-UFMG), will calculate the cells transition probabilities and generate 
maps of probabilities for each of the five types of land use change. These maps are compared 
to the actual land use transitions (Figure 5), and both of them together with preliminary 
simulation results are used for the model calibration. 
 

 
Figure 5. (a) Map of transition probabilities: res_serv (left) and (b) Map of land use transition: res_serv (right). 
 

The calibration process not only defines the best set of variables to explain each of the 
transitions but also internal parameters of the DINAMICA model like number of iterations, 
average size and variance of patches, etc. Have a good calibration been achieved, 
DINAMICA will carry out the final runs, where changes in the cells states occur through two 
types of transition algorithms based on eight cell Moore neighborhoods and which employ a 
stochastic selecting mechanism: (i) the “expander”, which accomplishes transitions from a 
state i to a state j only in the adjacent vicinities of cells with state j ; and (ii) the “patcher”, 
which realizes transitions from a state i to a state j only in the adjacent vicinities of cells with 
state other than j (Soares-Filho et al., 2002). 

6. Results and Discussion 

The best three simulation results are shown in Figure 6 and are seen in ERMapper, employed 
by DINAMICA as a visualization device. 
                     

        (a)                                      (b) 
 
 
 
 
 
 
 
 
                      (c)           (d) 
 
Figure 6. (a) Real land use change in Bauru from 1979 to 1988 (top left) and Simulations (b) 1, (c) 2 and (d) 3. 
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These three simulations were validated according to a multiple resolution fitting method 
(Constanza, 1989), and the values for goodness of fit obtained for windows sizes of 3x3, 5x5 
and 9x9 cells were 0.905172, 0.907539, and 0.907868, respectively for S1, S2, and S3. It is 
observable that the land use transitions comply with economic theories of urban growth and 
change, where there is a continuous search for optimal location, able to assure competitive 
real state prices, good accessibility conditions, rationalization of transportation costs, and a 
strategic location in relation to suppliers and consumers markets (Almeida et al., in press). 

6. Conclusions  

Methods of open systems modeling of which CA is one of the best examples and which meet 
many requirements for simulating dynamic processes quickly and efficiently are rarely 
implemented in GIS. As a result, GIS remains surprisingly narrowly focused (Openshaw, 
2000). In this way, our group at DPI-INPE is currently committed to the development of a 
multi-purpose 2D and 3D land use CA simulation module to be integrated with SPRING GIS. 

References 

Almeida, C. M.; Batty, M.; Monteiro, A. M. V.; Câmara, G.; Soares-Filho, B. S.; Cerqueira, G. C.; Pennachin, C. 
L. Stochastic cellular automata modeling of urban land use dynamics: empirical development and estimation, 
Computers, Environment and Urban Systems, in press. 

Batty, M. Geocomputation using cellular automata. In: Openshaw, S.; Abrahart, R. J. (eds), Geocomputation, 
New York: Taylor & Francis, chap.5, p. 95-126, 2000. 

Batty, M.; Xie Y. Possible urban automata, Environmental and Planning B, v.24, p. 175-192, 1997. 

Benati, S. A cellular automaton for the simulation of competitive location, Environmental and Planning B, v.24, 
p. 205-218, 1997. 

Bonham-Carter, G. F. Geographic information systems for geoscientists: modelling with GIS , New York: 
Pergamon, 1994. 

Clarke, K. C.; Hoppen, S.; Gaydos, L. A self-modifying cellular automaton model of historical urbanization in 
the San Francisco Bay area, Environmental and Planning B, v.24, p. 247-261, 1997. 

Constanza, R. Model goodness of fit: a multiple resolution procedure, Ecological Modelling, v.47, p. 199-215, 
1989. 

Jianquan, C.; Masser, I. Towards a Spatial Analysis Framework: Modelling Urban Development Patterns, 
[online], <http://www.geocomputation.org/2001/papers/cheng.pdf>, Oct. 2002. 

Hosmer, D. W.; Lemeshow, S. Applied Logistic Regression, New York: John Wiley & Sons, 307p., 1989. 

Morisette, J. T.; Khorram, S.; Mace. T. Land-cover change detection enhanced with generalized linear models, 
International Journal of Remote Sensing, v.20, p.2703-2721, 1999. 

Openshaw, S. GeoComputation. In: Openshaw, S.; Abrahart, J. (eds), Geocomputation, London: Taylor & 
Francis, p. 1-32, 2000. 

Portugali, J.; Benenson, I.; Omer, I. Spatial cognitive dissonance and sociospatial emergence in a self-organizing 
city, Environmental and Planning B, v.24, p. 263-285, 1997. 

Soares-Filho, B. S., Cerqueira, G. C.; Pennachin, C. L. DINAMICA – a stochastic cellular automata model 
designed to simulate the landscape dynamics in an Amazonian colonization frontier, Ecological Modelling, 
v.154, p.217-235, 2002. 

Tang, B. S.; Choy, L. H.-T. Modelling planning control decisions: a logistic regression analysis on office 
development applications in urban Kowloon, Hong Kong, Cities, v.17, p.219-225, 2000. 

White, R. W.; Engelen, G. Cellular automaton as the basis of integrated dynamic regional modelling, 
Environmental and Planning B, v.24, p. 235-246, 1997. 

Wu, F. Modelling intrametropolitan location of foreign investment firms in a Chinese city, Urban Studies, v. 37, 
p. 2441-2464, 2000. 


	indice: 
	tema anterior: 
	artigo anterior: 
	proximo tema: 
	proximo artigo: 
	indice_txt: índice
	tema_ant_txt: tema anterior
	tema_prox_txt: próximo tema
	artigo_ant_txt: artigo anterior
	artigo_prox_txt: próximo artigo


