Conversão de Dados entre os Sistemas SGI e ARC/INFO

DIÓGENES S. ALVES 1, EUGÊNIO SPER DE ALMEIDA 2

Divisão de Processamento de Imagens (DPI)
Instituto Nacional de Pesquisas Espaciais (INPE)
C.P. 515, CEP 12201-970, São José dos Campos, SP
Internet: dalves@dpi.inpe.br 1, eugenio@dpi.inpe.br 2

Abstract. A method for converting SGI information planes into ARC/INFO coverages is presented, including the conversion of geometric (lines and polygons) and atribute (SGI classes) data. The method is being used for generating ARC//INFO data from deforestation, vegetation and other data of the Amazonia Information System, a geo-referenced data base for Amazon ecosystems. A simplified version of C code used is presented.

Introdução

O uso de sistemas de informações geográficas (SIG) incentiva e, de certa forma, até pressupõe o intercâmbio de dados digitais mantidos por diferentes instituições em diferentes sistemas.

Tal intercâmbio reduz o custo de criação dos acervos de dados digitais e favorece a padronização e a disseminação das bases de dados. Apesar de existirem padrões para intercâmbio de dados, é comum o desenvolvimento de soluções específicas para a conversão de dados entre sistemas diferentes, principalmente quando a adoção de padrões de intercâmbio pode aumentar a complexidade da tarefa e, consequentemente, seus custos.

No caso específico do INPE, o desenvolvimento do Sistema de Informações *Amazônia* (Alves et al, 1992), motivou o intercâmbio de dados entre diferentes sistemas, em particular entre o SGI e o ARC/Info.

O *Amazônia* é uma base de dados georeferenciados sobre os ecosistemas da Amazônia, que reúne, em seu estágio atual, 5 conjuntos de dados principais:

a) TM

Escala: 1/250.000 Projeção: UTM

Conteúdo: áreas desflorestadas entre 1984 e

1991; limites das áreas de florestas, hidrografía, limites estuduais,

cobertura de nuvens.

Fonte: imagens Landsat TM e mapas

topográficos

b) MSS

Escala: 1/500.000 Projeção: Lambert

Conteúdo: áreas desflorestadas em 1975 e 1978

Fonte: imagens Landsat MSS

c) VEGE

Escala: 1/1.000.000 Projeção: Lambert

Conteúdo: mapas de vegetação

Fonte: mapas de vegetação do projeto

RADAM

d) ZOPOT

Escala: 1/2.500.000 Projeção: policônica

Conteúdo: mapa de vegetação

Fonte: mapa de vegetação do projeto

ZOPOT

e) MUNI

Escala: 1/2.500.000 Projeção: policônica

Conteúdo: mapa de municípios da Amazônia

Legal

Fonte: mapa de municípios, em formato

digital, produzido pelo IBGE.

O custo de criação de uma base de dados como essa é elevado e seus dados de grande utilidade para diversas instituições, justificando o desenvolvimento de métodos de intercâmbio de dados. No caso, o ARC/INFO é um dos sistemas de maior popularidade e, estando disponível no próprio INPE, pode também ser utilizado para tratamentos específicos.

O presente trabalho apresenta um método para conversão de dados de um <u>plano de informações</u> do SGI, da categoria mapa poligonal (SGI - manual do usuário) para uma coverage do ARC/INFO. O método prevê a conversão de dados geométricos (linhas e polígonos) e da classe de cada polígono, que é inserida no ARC/INFO na forma de atributo de polígono.

Dados do SGI

O sistema SGI foi desenvolvido no INPE apara microcomputadores PC com o sistema operacional DOS. Êle incorpora recursos para o tratamento de dados vetoriais e *raster*, permitindo tratar mapas temáticos, modelos numéricos de terreno (MNT) e também imagens de satélite (de Souza et al, 1990).

Mapas temáticos, também chamados mapas poligonais, são mapas que contém polígonos e/ou linhas, representando entidades como municípios, classes de vegetação e drenagem.

Mapas temáticos são usados para representar, num único plano de informações - PI - (Erthal et al, 1988), entidades de um mesmo tema, como por exemplo, municípios (num mapa de municípios) e unidades de vegetação (num mapa de vegetação). Neste caso, o usuário associa uma classe (por exemplo, a classe de vegetação) a cada entidade.

Para associação da classe a um polígono, o SGI exige que um ponto denominado <u>centróide</u> seja colocado no interior do polígono. A classe é então associada ao centróide, o que permite que o polígono seja associado posteriormente à classe do centróide que contém, durante a poligonalização.

Dados do ARC/Info

O ARC/INFO é um sistema disponível para diversas plataformas, sendo comuns no Brasil implementações em micromputadores PC (PC ARC/INFO) e estações de trabalho com o sistema operacional UNIX.

Pode-se dizer que um PI da categoria mapa poligonal do SGI corresponde a um coverage (ESRI, 1991) no ARC/INFO. Ambos são formados por áreas e linhas, que representam entidades do mapa. O ARC/INFO permite, no entanto, a associação de um número

arbitrário de atributos a cada entidade, enquanto que o SGI, nas versões disponíveis atualmente, limita-se apenas a um atributo - a classe da entidade. Finalmente, vale lembrar que o INFO é o banco de dados do ARC/INFO que gerencia os atributos dos objetos.

Polígonos no ARC/INFO também podem receber um centróide, denominado LABEL, ao qual é associado um atributo especial - o identificador do polígono. Outros atributos podem ser associados a cada polígono tomando por base seu identificador.

Programa de Conversão

O programa de conversão apresentado no final deste artigo baseia-se em dois princípios básicos:

- 1. As linhas e os centróides do PI original são convertidos em dois arquivos em formato aceito pelo comando GENERATE do ARC/INFO. Os elementos dos dois tipos são numerados seguindo sua ordem de aparição no PI.
- 2. A classe de cada polígono dá origem a um terceiro arquivo que associa os números (identificadores) dos polígonos às suas classes.

Tanto linhas como polígonos são introduzidos no coverage do ARC/INFO com o comando GENERATE. Já a classe de cada polígono é introduzida por uma sequência de operações que permitem adicionar o atributo no coverage, para em seguida introduzir os atributos no INFO.

Modo de emprego

O programa cria os arquivos seguintes:

contendo, respectivamente as LINES do coverage, os LABELS do coverage (identificadores dos polígonos

associados às coordenadas dos centróides), e as classes de cada polígono.

Para inserir esses dados no ARC/Info, deve-se usar o comando

GENERATE <coverage>

seguido das opções INPUT LINES e INPUT LABELS, para importar LINES e LABELS.

Em seguida a topologia é gerada (e.g. CLEAN).

Para associar as classes aos polígonos, deve-se criar uma tabela no Info:

DEFINE <tabela>, com os ítens:

<cover-id> - 4,5,B 🖟

e

<classe> - 17,17,C

e usar JOINITEM <cover.pat> <tabela> <cover.pat> ... para associar as classes aos poligonos.

Conclusão

O método de conversão apresentado aqui é simples e tem demonstrado sua funcionalidade no âmbito dos trabalhos do sistema de informações *Amazônia* e também de outros usuários.

Êle prevê apenas a conversão de mapas poligonais em coverages do ARC/INFO. A conversão de dados da categoria MNT deve ser baseada em princípios diferentes dos aqui utilizados.

Além da conversão de dados do SGI para o ARC/INFO, um programa para a conversão inversa também foi desenvolvido na DPI/INPE. Esse programa não é apresentado aqui, mas vale mencionar que foi usado, por exemplo, para a entrada do mapa de municípios do IBGE, criado em formato ARC/INFO no sistema Amazônia.

A conversão de mapas poligonais em coverages assim como a operação inversa podem ser facilmente estendidas para tirar proveito do conjunto de atributos armazenados pelo ARC/INFO e pelo SGI em suas versões futuras.

Agradecimentos

Os autores agradecem todos aqueles que contribuiram para o uso dos sistemas de conversão, em particular Marcos e Ana Lúcia do IBGE, cujos dados estão sendo de grande importância para o *Amazônia*, e Bob da EletroNorte, pelas sugestões. Igualmente, gostariam de registrar seu reconhecimento ao EGO da Helen pela impressão sem falhas, apesar do grande volume de trabalho.

Bibliografia

Alves, D.S. et al, 1992 The Amazonia Information System, XVII Congress of the ISPRS, Archives, Washington D.C., August 1992

de Souza, R.C.; Câmara Neto, G.; Alves, D.S., 1990 O Desenvolvimento de Sistemas de Informação Geográfica e de Processamento Digital de Imagens no INPE, Simpósio Brasileiro de Geoprocessamento, Anais, São Paulo, Maio de 1990, pp 168-173

Erthal, G.J.; Câmara, G.; Alves, D., 1988 Modelo de Dados Geo-Relacional: Uma Visão Conceitual de um Sistema Geográfico de Informações, I Simpósio Brasileiro de Computação Gráfica e Processamento de Imagens (SIBGRAPI), Anais, Petrópolis, Brasil, Abril de 1988

Manual de programação SGI, sem data, Engespaço Indústria e Comércio, aprox. 350 pag.

ESRI, 1991 ARC/INFO Data Model, Concepts, & Key Terms, ARC/INFO (R) Users Guide, ESRI, Inc, 1991

Anexo - Listagem simplificada do programa

ANEXO - Listagem do Programa

```
*****************
 Resumo : Converte um PI do projeto ativo para o formato ARC
 Entradas : Nome do plano de informação
 Saidas
          : Arquivo de linhas (arcos e ilhas)
            arquivo de centroides, contendo X, Y, classe
            arquivo de poligonos, contendo polig-id, classe
 Notas:
          1. variaveis em maiusculas sao constantes
          2. diversas variaveis sao struct definidas pelo SGI
          3. as definicoes de variaveis, struct e constantes
             que nao sao primordiais para a compreensao do codigo
             sao omitidas
******************
main () {
     dia_titulo("Conversao SGI -> ARC");
     Inicializacao do projeto ativo
     if(sgi_le_contexto(nome_projeto) != ERRO_NORMAL)
          dia_erro ("Selecione projeto");
          exit (ZAP);
     if(dir_carga (nome_projeto,0) != ERRO_NORMAL)
          dia_erro ("Diretorio nao existe");
          exit (ZAP);
     dia_poe_string (LIN,COL, "Nome do projeto : ",nome projeto);
     Definicao do plano de informacoes a ser convertido
pergl:
          switch (dia_pega_string(LIN+2,COL,help,"Digite nome do plano
                    nome_pi,COMPR PI))
          case VOLTA: goto pergl;
          case FIM: exit (ZAP);
          default: break;
```

```
1 *
           Verifica se o plano existe
     if(! pi existencia(0,nome pi)
           dia_erro("Plano nao existe");
            goto pergl;
     }
     Criacao dos arquivos de saida:
     a) arquivo de LINES (*) com extensao .lin
     b) arquivo de LABELS (*) com extensao .lab
     c) arquivo das classes dos poligonos, com
        extensao .pol
      (*) - para uso com o comando GENERATE do ARC/INFO
     obs: nome arq e' formado por <nome_projeto>_<nome_pi>
     monta_nome_arquivo (nome_projeto,nome_pi,nome_arq);
     for(;;) {
            if ((saida_lin=cria_arquivo(nome_arq,".lin")) == NULL) {
                  dia erro("Erro de criacao do arquivo de LINES");
                  exit (ZAP);
            if ((saida lab=cria arquivo(nome arq,".lab")) == NULL) {
                  dia erro("Erro de criacao do arquivo de LABELS");
                  exit (ZAP);
            if ((saida pol=cria arquivo(nome_arq,".pol")) == NULL) {
                  dia erro("Erro de criacao do arquivo de POLIGONOS");
                  exit (ZAP);
                  }
            }
      /* geracao do arquivo de linhas */
      if (GENERATE_LIN(nome_projeto,nome_pi,nome_arq,saidalin,per)
          != ERRO) {
          /* geracao dos arquivos de centroides e de classes */
          GENERATE CEN(nome projeto, nome pi, nome arq, saidacen, saidapol, per);
      exit (ZAP);
}
```

288

```
GENERATE LIN - gera arquivo de linhas
     **********************
GENERATE_LIN(nome_regiao,nome_pi,nome_arq,saida,per)
struct
               desc linhas
                             pdes;
struct
               arq linhas
                               plin;
double
               offx, offy;
float
               VX[NUM_PT], VY[NUM PT];
          Abertura do arquivo de linhas
         e inicializacoes
     if(linha_abre_arq(&pdes,&plin,nome_arq) != ERRO) {
          dia_erro("Erro na abertura do arquivo de linhas");
          return(ERRO);
          }
     if(pdes.des_nlinhas==0) {
          dia_erro("Arquivo de linhas nao existe ou vazio");
          return(ERRO);
          }
     dir rec offset
                    (0,&offx, &offy); /* offset do projeto*/
     linha_rewind(&pdes);
/*______
          Escreve linhas no arquivo .lin
          i,j - numeros da linha e ponto
     for(j=0,i = 1; i <= npt; i++) {
       if(linha_leseq_head(&pdes,&plin,&ndalin) == ERRO) {
          dia_erro("ERRO - leitura das linhas do PI");
          return (ERRO);
       if(linha_le(&pdes,&plin,ndalin,vx,vy,&npontos) == ERRO) {
          dia_erro("ERRO - leitura das linhas do PI");
          return (ERRO);
       fprintf(saida, "%d\n", i);
       for(j=0;j<npontos;j++)</pre>
          fprintf(saida, "%15.61f %15.61f\n",
               (double)vx[j]+offx,(double)vy[j]+offy);
       fprintf(saida, "END\n");
     fprintf(saida, "END\n");
     linha_fecha_arq(&pdes);
     return(OK);
} /* GENERATE LIN */
```

```
***********************
           GENERATE CEN - gera arquivos de centroides e classes
GENERATE_CEN(nome_regiao,nome_pi,nome_arq,saida,saida2,per)
{
struct
                 arq tabela ptab;
struct
                 desc_tabela pdtab;
char
                 rotulo [MAX CLS][COMPR CLS];
float
                x, y;
double
                offx, offy;
     dir rec offset
                     (0,&offx, &offy);
     /* Leitura da tabela de classes */
     if(tab_abre_arq(&pdtab,&ptab,nome_arq) == ERRO) {
           dia_erro("Arquivo tabela nao existe");
           return(ERRO);
     if(pdtab.des_nclasses==0) {
           dia_erro("Arquivo tabela nao existe ou vazio");
           return(ERRO);
                 /* pdtab.des nclasses - numero de classes */
     for (i=0;i<=pdtab.des_nclasses;i++) {</pre>
           if(tab_le_atributos(&pdtab,&ptab,i) == ERRO) {
                 dia_erro("Erro na leitura do arquivo tabela");
                 return (ERRO);
           strcpy (rotulo[i], ptab.tab_rotulo);
     /* Leitura do arquivo de centroides */
     if(cent_le_arq(&ncents,pcen,nome arq) == ERRO) {
           dia_erro("Arquivo de centroides nao existe");
           return(ERRO);
           }
           Escreve LABELS e CLASSes, ncents - numero de centroides
         for(i=ini;i<=ncents-1;i++) {</pre>
           if(cent_le_dados(ncents,pcen,&indice,&x,&y,i) == ERRO) {
                 dia_erro("Numero de centroide invalido");
                 return (ERRO);
           fprintf(saida, "%4d %15.61f %15.61f\n",
                 i+1, (double)x+offx, (double)y+offy);
           fprintf(saida2, "%4d, %s\n", i+1, rotulo[indice]);
     fprintf(saida, "END\n");
     return(OK);
} /* GENERATE CEN */
```