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Abstract. Trace gas profile retrieval constitutes an ill-posed inverse problem. This paper explores the potential 

of the application of neural networks for the retrieval of methane vertical column densities from remote sensed 

radiances. Three types of neural networks have been tested using noiseless and noisy data. Here we focused on 

the reconstruction of vertical column densities using SCIAMACHY channel 8 nadir measurements (~ 2.3 mm). 

Overall, the use of neural networks was able to solve this difficult inverse problem even in the presence of noise 

in the data. A comparison among different network architectures was accomplished but it was not possible to 

detect great discrepancies in the performance of them. 
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1. Introduction 

Methane (CH4) and carbon dioxide (CO2) are the most important anthropogenic greenhouse 

gases. Recent studies have shown that atmospheric methane concentrations have increased by 

approximately 150% since pre-industrial times. This corresponds to a radiative forcing of 

0.48Wm
−2
, which amounts to 20% of the total radiative forcing due to well-mixed greenhouse 

gases. More than half of the present-day methane emissions are of anthropogenic origin and 

the most important sources are fossil-fuel production, domestic ruminants, rice cultivation and 

waste handling. CH4 absorbs the rising radiation from the earth-atmosphere system on the 

near infrared spectral range and plays an important role in the greenhouse effect and in the 

climatic change over the globe according to IPCC (2001). 

Within the context above, it is becoming increasingly relevant to develop novel and better 

techniques to estimate concentration profiles of atmospheric constituents like methane. In this 

sense, a good alternative is the use of satellite remote sensing data. CH4 retrieval feasibility 

and sensitivity studies have already been performed for the Atmospheric Infrared Sounder 
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(AIRS), see Christi (2004) and Engelen (2004), and the Scanning Imaging Absorption 

Spectrometer for Atmospheric Chartography (SCIAMACHY), see Buchwitz (2004) and 

Buchwitz (2005). 

In this article we discuss a neurocomputing approach to deal with this kind of inverse 

problem. In a first step, we investigated the performance of the radiative transfer model 

(forward model) to be used in the inversion process. The forward model used here is the 

SCIATRAN code, developed by the University of Bremen (IFE/IUP) to simulate radiances 

from SCIAMACHY satellite spectrometer, as described by Rozanov (2002). Based on these 

studies we decided to exploit the Sciamachy data near-infrared channel 8 in order to do the 

CH4 profile inversion as related above. In a second step, we developed a neural network for 

reconstructing methane vertical column densities from remote sensing data. To this end, we 

employed synthetic radiances simulated by SCIATRAN for the learning process of the neural 

network. Finally, we validated our approach using a set of more than a hundred test cases, 

with and without noise in the radiance data. 

2. Forward model 

The SCIATRAN, developed at University of Bremen (IFE/IUP), initially to simulate 

radiances from SCIAMACHY satellite spectrometer, was applied to generate the synthetic 

radiances used in this work. SCIATRAN, written in FORTRAN 95, has been developed to 

perform radiative transfer modeling in any observation geometry appropriate to measurements 

of the scattered solar radiation in the Earth’s atmosphere, and has been used as a forward 

model in the retrieval of atmospheric constituents from measurements of scattered solar light 

by satellite, ground-based, or airborne instruments in UV–Vis–NIR spectral region. 

SCIATRAN solves the radiative transfer equation using the Finite Difference Method for 

a plane-parallel vertically inhomogeneous atmosphere taking into account multiple scattering, 

a new version support additionally radiative transfer calculations in a spherical atmosphere. 

The wavelength range covered by the radiative transfer model is 175–2380 nm, including 

Schuman-Runge and Herzberg absorption bands of oxygen (see Rozanov (2002) for more 

details). 

In our study, we used the SCIATRAN version 2.1; it was adjusted in such a way that all 

radiative transfer calculations were performed in a spherical atmosphere (i.e., all effects due 

to the sphericity of the Earth’s atmosphere were considered). By default, a climatological data 

base obtained using a 2D chemo-dynamical model developed at MPI Mainz by Brühl and 

Crutzen (1993) is employed in SCIATRAN. This data base contains monthly and latitudinal 

dependent vertical distributions of atmospheric trace gas volume mixing ratios, pressure, and 

temperature between 0 and 60 km. 

 

3. Neural network architecture 

An artificial neural network (ANN) is an interconnected group of artificial neurons, elements 

of networks, that uses a mathematical or computational model for information processing 

based on a connectionist approach to computation. An input to a neuron consists of a number 

of values (x1, x2,..., xn), while output is single value y. The neuron computes the weighted sum 

of its inputs, subtracts some threshold T, and passes the result to a non-linear function f (e.g., 

a sigmoid). In more practical terms, neural networks are non-linear statistical data modeling 

tools. They can be used to model complex relationships between inputs and outputs or to find 

patterns in data. In this paper, we used three types of neural networks: a feedforward 

backpropagation network, Elman backpropagation network, and a Radial basis Function 

network (RBF). 
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The first one is a multilayer perceptron (MLP) with backpropagation learning. In this 

network, the information moves in only one direction, forward, from the input nodes, through 

the hidden nodes (if any) and to the output nodes. There are no cycles or loops in the network. 

MLP is especially useful for approximating a classification function that maps input vector 

(x1, x2, ..., xn) to one or more classes (C1, C2, ,…, Cm). By optimizing weights and thresholds 

for all nodes, the network can represent a wide range of classification functions. 

A simple recurrent network (SRN) is a variation on the multi-layer perceptron, sometimes 

called an "Elman network". A three-layer network is used, with the addition of a set of 

"context units" in the input layer. There are connections from the middle (hidden) layer to 

these context units fixed with a weight of one. At each time step, the input is propagated in a 

standard feed-forward fashion, and then a learning rule (usually back-propagation) is applied. 

The fixed back connections result in the context units always maintaining a copy of the 

previous values of the hidden units. Thus the network can maintain a sort of state, allowing it 

to perform such tasks as sequence-prediction that are beyond the power of a standard multi-

layer perceptron. 

The last type of neural network used in this work was the RBF network. Haykin (1994) 

and Bishop (1995) describe it as a type of neural network employing a hidden layer of radial 

units and an output layer of linear units, and characterized by a reasonably fast training and a 

reasonably compact architecture. The Radial Basis Function is embedded in a two layer 

neural network, where each hidden unit implements a radial activation function. The output 

units implement a weighted sum of hidden unit outputs. Their excellent approximation 

capabilities have been studied in Poggio & Girosi (1990). Due to their nonlinear 

approximation properties, RBF networks are able to model complex mappings, which 

perceptron neural networks can only model using multiple intermediary layers. A more 

detailed introduction on ANNs can be found in Haykin (1994) and Tsoukalas & Uhrig (1997). 

Regardless their type or use, all neural networks have three stages in their application: the 

learning, the activation and the generalization steps. It is in the learning step that the weights 

and bias corresponding to each connection are adjusted to some reference examples (the 

input). In the activation phase, the output is obtained based on the weights and bias computed 

in the learning phase. The experimental data used here in the learning step were simulated 

adding a random perturbation to the exact solution for forward problem (SCIATRAN): 

  σµIII
~

exactexact −=                     (1) 

where σ is the noise standard deviation and µ is a random variable taken from a Gaussian 

distribution with zero mean and unitary variance. In all simulations we used 05.0σ = . 

Overall, more than one hundred pairs of concentration profiles and their corresponding 

radiances needed to inversion process, and that constitute what was called of radiance dataset 

or SBD. Similar data sets were utilized for the activation and generalization phases of the 

ANN. 

4. Results 

In order to analyze the performance of the ANNs in the retrieval of methane vertical column 

densities, two experiments were performed. In the first experiment noiseless data sets were 

used, and in the second one, 5% of white Gaussian noise ( 05.0σ = ) was added to the 

synthetic data, simulating the real experimental data. All ANNs were trained with only one 

hidden layer, varying the number of hidden neurons and the database training. The MLP 

neural network, the RBF and the Elman network were implemented using 20, 40 and 40 

neurons, respectively. The training phase was carried out until a minimum value for the RMS 
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error or a maximum number of iterations were reached. The results are available for five 

layers: Layer 1 [0.03 - 0.000027 mb]; Layer 2 [3.3 - 0.03 mb]; Layer 3 [43.7 - 3.3 mb]; Layer 

4 [179 - 43.7 mb] and Layer 5 [1013 - 179 mb]. Some discrete points (pressure) are 

considered for each layer, 49 discrete points at all. It is important to notice that the first layer 

has more discrete points than other layers. It received more attention because the main interest 

for meteorological purposes concerning the trace gas retrieval issues are the layers below p 

=100 mb. 

The mean errors of the simulation results for each atmospheric layer obtained with the 

neural network were calculated through: 

( )∑
=

−=
t

b

p

pi

2networkneural

i

exact

i CC
N

1
Error                  (2) 

where N is the number of sample points (sub-layers) at each layer, pb and pt are, respectively, 

pressure (level) at bottom and top for each layer. It’s also important observe that only the best 

training varying the number of hidden neurons for each one of ANN’s are taken into account. 

Figures 1 and 2 show the results of the generalization tests in comparison with the true model 

(here called radiosonde). Table 1 summarizes the errors (in ppmv) for different neural 

network and each atmospheric layer considering a noiseless dataset. Table 2 shows the same 

results as in Table 1, but for noisy data. 

The results obtained with noiseless data are in excellent agreement with the true model. 

Reconstruction could be done up to a precision of 1% with reference to a synthetic database, 

for all layers. In this case, the RBF network presented the best global performance, although 

the MLP and the Elman networks also produced good profile reconstructions. Preliminary 

results considering noisy data show goods results for all layers, with RMS errors in order of 

10% of reference data. The best results for noisy data were obtained for the RBF network, 

except for layer 5, where the Elman network gave better results. A despite of these 

discrepancies, we may say that all ANN analyzed here produced similar results. 

 

   
    (a)      (b)       (c) 

Figura 1 - Generalization results of CH4 vertical column densities retrieval (in ppm) for 

noiseless data using: (a) MLP Network, (b) RBF Network, and (c) Elman Network. 
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           (a)           (b)            (c) 

Figura 2 - Generalization results of CH4 vertical column densities retrieval (in ppm) for noisy 

data using: (a) MLP Network, (b) RBF Network, and (c) Elman Network. 

 

 

Table 1. Generalization noiseless results of CH4 vertical column densities retrieval (in 
ppm). 

 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 

MLP 2.01e-02 1.99e-02 5.39e-02 1.08e-02 4.60e-03 
RBF 4.47e-05 6.11e-05 2.66e-04 5.90e-04 3.67e-04 
Elman 1.54e-02 1.94e-02 3.98e-02 1.03e-02 4.40e-03 

 

 

Table 2. Generalization noisy results of CH4 vertical column densities retrieval (in 
ppm). 

 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 

MLP 3.91e-02 5.78e-02 1.29e-01 2.65e-01 2.06e-01 
RBF 2.11e-02 2.71e-02 3.82e-02 1.05e-01 2.43e-01 
Elman 3.23e-02 4.93e-02 1.34e-01 2.02e-01 1.89e-01 

 

 

5. Final remarks 

In this paper, three architectures of neural networks were applied to the inverse problem of 

retrieval of methane vertical concentration profiles from remote sensing data. Here we 

focused on the reconstruction of vertical column densities using SCIAMACHY channel 8 

nadir measurements (~ 2.3 mm). 

Overall, the use of neural networks was able to solve this difficult inverse problem even 

when the data were contaminated with noise. A comparison among different ANN 

architectures was accomplished but it was not possible to detect great discrepancies in the 

performance of them. Some modifications could be implemented in order to improve the 

neural network performance. The use of noisy data in the training data is an obvious one. The 
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incorporation of real satellite radiances is another. From this preliminary exercise, two 

advantages of the use of neural networks became clear: after the training phase, the 

reconstruction algorithm is much faster than the classical inversion methods; and it is an 

intrinsically parallel approach that can be very easily implemented in a parallel environment.  
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