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Abstract. A method for classifying agricultural crops using multi-temporal, multi-spectral and multi-source
remotely-sensed data is described. The procedure characterizes all the pixels in a scene by considering their
intensity values as a function of time of imaging and spectral waveband. An analytical surface is interpolated
through these data points, which may beirregularly spaced. Two fitted function interpolation methods were used
to generate and parameterize the analytical surfaces. Then, the surface coefficients were input to two different
supervised classifiers (Maximum Likelihood and Artificial Neural Network agorithms). Results show that
classification accuracy is significantly improved in comparison with the use of any single-date image.
Classification accuracies in excess of 87% were achieved. The advantages of the methodology described in this
paper are that it takes account of the reflectance spectra at different points in the growing season, and that the
time periods between images, as well as the wavebands, need not be the same at each date. Thus, the procedure
can handle data from sensors such as SPOT HRV and Landsat TM. In addition, the use of coefficients to
represent the analytical surfaces significantly reduces the amount of data processing, whilst maintaining
information reliability.

Keywords: image classification, multitemporal classificatios, multi-source classification, neural networks.

1. Introduction

Efficient crop management practices require accurate and rapid information about crop
digributions. Commonly, multispectral remotely sensed images are used to distinguish crop
types on the bads of their spectrad properties (Mather, 1999). However, such anayss
invalving sngle-date images has the drawback that, snce maximum discrimination between
different crop types occurs a different stages in the growth cycle, not al differences are
incorporated in the procedure. Moreover, different crop types represented in the area under
sudy may be at different stages of growth. In addition, the tempora ‘profile of the spectrd
reflectance curve of each crop is not taken into account. Such profiles may be of condderable
vaue in discriminating between crop types, which may be difficult to distinguish a certan
points in the growth cycle. Furthermore, results derived from data obtained by different
sensors may not be comparable due to differences in spectrd and spatial characterigtics.
Findly, snce agriculturd crops are dynamic, it is often ussful to observe their development
over time (eg., crop yidd edimation). A solution is to use multitempora images for crop
monitoring (Badhwar e d., 1982). For most current multitempora classification techniques, a
correspondence of time to growth date is established for each possible crop category that
minimises the smdlest difference between the given multispectral-multitempora  vector and
the category mean vector indexed by growth state (Haralick et d., 1980). These techniques,
however, ae farly inaccurae dnce only rdatively few datic spectrd and tempord
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‘sngpshots  contribute to crop identification. That is, images with specific spectrd wavebands
acquired on specific dates are used, rather than images with entire spectrd and tempord
continua. Usng the latter may increase crop classfication accuracy dnce they contain more
information than the former (Labin and Strahler, 1994).

This paper demondrates a methods of cdlassfying agriculturd crops using the spectra-
temporal sgnatures of remotey sensed images. Per-pixd classficaions are performed using
multispectra, multitemporal and multisource data, whereby andytical surfaces representing
the spectrd and tempord continua of each feature (pixe) are interpolated and their
coefficients are used as discriminating variables.

2. Study Area and Data Set

The study area was located near the town of Littleport in Cambridgeshire, eastern England.
This area was gpproximatedly a mean sea levd with gently undulating topography. The
agriculture of the region was characterized by rotational crop plantation techniques.

Eight remotey sensed images acquired throughout the 1994 summer growing Sesson were
used for andyss These included four Landsat TM images (11 June, 27 June, 20 July, 14
Augus) and four SPOT HRV images (13 May, 28 June, 30 July, 14 August). Only six
gpectral wavebands of Landsat TM imagery were used since the therma infrared band (band
6) was omitted from andyss. In addition, loca farmers Fed Data Printouts for 1994 were
collected and used to generate a ground reference data set.

All images were geometricaly regidered to the British Nationd Grid. For each image,
regidration was performed using 17 ground control points and nearest neighbor re-sampling,
gnce this technique mantaned the origind pixd vaues (Jensen, 1986). In each case, the
root-mean-square error associated with registration was less than 0.5 pixes.

Atmospheric correction was performed to account for amospheric differences between
multitemporal  images. Initidly, image digitd numbers were corrected to radiance using
information supplied with the image data files (Telllet and Fedosgevs, 1995). Radiance was
then converted to apparent reflectance (recorded at the sensor) and findly to surface
reflectance. The find step used an inverson of the 5S (Simulaion of the Satdlite Signd in
the Solar Spectrum) model (Tanré, 1990).

3. The Spectra-Temporal Response Surfaces (STRS) Model

Badhwar et d. (1982), Badhwar (1984), Hardick et a. (1980), Lambin and Strahler (1994)
and Ortiz et a. (1997) condder the problem of characterizing the temporad dimenson but
none utilizes the method proposed by Vidra et d. (1998, 2000), involving the use of the
spectra-tempord  response surfaces (STRS), which provide for the generdisation in time of
spectrd reflectance properties of agricultural aress. The type and sequence of procedures used
in the generation and potentia use of the STRS representations are outlined in Figure 1.

The STRS approach is based on a view of multi-band and multitempord imagery from
different sources represented in a three-dimensona space, the axes of which are time (x),
spectra waveband (y) and reflectance ). Measurement from a number of different sensors in
the opticd wavebands can be plotted in this space. A bivariate polynomid of the form: z =
F(x,y), where F() indicates a polynomia function of some order, is generated for each of the
crop types in the area of study. Two methods were used in order to generate the fitted
aurfaces. polynomid trend surface anadyss (PTS) and collocation (COL), snce fitted function
interpolation can impose a prescribed genera behavior on the surface to override aberrant,
anomalous, or noisy data Watson (1999) and Lam (1983) give comprehensive reviews on
these interpol ations methods and Mather (1976) reviews polynomid trend surfaces.
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Figure 1. An outline of the methodology followed in this study to generate the STRS representations

These andyticd functions are then parameterized and their coefficients, rather than the
pixe vaues in each spectrd band, are used as input festures in the image classfication
process.

4. M ethodology

4.1. Sampling Techniques and Classfication Phase

From the co-registered and radiometricaly corrected image s&t, two independent sample sets
(tota 1440 pixeds) were sdected using dratified random sampling technique and representing
the Sx most common cover types in the sudy area: Potatoes, Sugar beet, Whesat, Fdlow,
Onions, and Pess. Each sample has 120 patterns per class (total 720 pixels). One sample
(sdlected a random) was used to training the classfier and the other one was reserved for
vdidating the methodology.

The image acquidtion dates were expressed in the form of Julian days (x-axis) and the
gpectra dimensions (y-axis) were characterized by their medid waveband values computed in
the form of waveengths. Thus, the spectrd bands were labded usng the medid waveength
values of 0.458, 0.56, 0.66, 0.83, 1.645, 2.215 — given to the gx avalable TM channels
(except the thermd infrared TM band 6) - and 0.545, 0.645, 0.84 — given to the three HRV
channels respectively.

The radiometric properties are expressed in the form of reflectance vaues dong the z-
axis. Furthermore, for each pixe, 36 three-dimensiond control points were generated (4 TM
images with 6 bands plus 4 SPOT HRV images with 3 bands). It is important to mention that
the vaues dong the x, y and z axes are scaed into the interval between 0 and 1 sometimes
referred to as normdization, before the interpolation phase.

Initidly the control points were used to fit a surface usng a Polynomia Trend Surface as
described earlier. Although a surface order of 7 (36 coefficients) explained over 99% of the
sum of squares, usng a surface order of 3 (10 coefficients) experimentaly proved to be
enough to characterize the andytica surfaces. Then, the same control points were used to fit a
asurface usng the Collocation Interpolator. As the interpolated coefficients show different
magnitudes on ther vaues, they were again scded callectively to the intervd between 0 and

257



Anais X1 SBSR, Belo Horizonte, Brasil, 05-10 abril 2003, INPE, p. 255-262.

1 before the training and test phases. One pixd example of the PTS and Collocation andytica
surfacesisshown in Figure 2 (ato f) for each crop.

According to Vidra e d. (2000) the Maximum Likdihood (ML) dassfier is the
agorithm that best combines classfication accuracy and computationa economy when these
coefficient are used as input into the classfication process. Therefore, a supervised
cassfication was performed usng the Maximum Likeihood (ML) dgorithm developed by
Mather (1999) and adapted to classfy 3D surface coefficients.

FTE: Hismeag chasicen oL alscmican lomeay chmica P rmcpabiiion - cllcortion [oogpd mien

RAR AR AR
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Figure 2. Analytical surfaces and contoursfor several crops.

For the purposes of comparison, a single-date image (Landsat TM, acquired on 27th June
1994) was used to perform a standard classfication in order to compare the results of this
multitemporal and multisource method againg a classfication based on a sngle-date image.
For each pixd, the sx reflectance vaues are consdered together and, therefore, generating a
gx dimensond vector, to be adso used as input into the supervised cassfiers Maximum
Likeihood (ML), Artificid Neura Network (ANN) and two variants of an Artificid Neura
Network (ANN and ANNT).

Both atificid neurd network architectures chosen are multilayer perceptrons using the
backpropagation agorithm (Benediktsson et a., 1990; Bischof et d., 1992; Civco, 1993). The
only difference between the modds is in the input layer. The firs ANN modd was
implemented having one pixel per spectrd band in the input layer. Therefore, this neurd
network had 6 nodes in the first layer. The input nodes in the ANNT moded represented a 3 by
3 window of pixel data from each band of the image (totd 54 nodes in the input layer) as the
input (Paola, 1995). Thisinput modification takes loca texture information into account.

All neurd networks configurations tested had an output layer with 6 nodes,
corresponding to the 6 general crop classes. The number of hidden layers and the number of
hidden nodes were found (1 hidden layer and 10 nodes) using the Hirose et d. (1991) building
up procedure. The learning rate and momentum were set initidly a 0.2 and 0.9 respectively.
The learning rate was reduced during the training to 0.1 after 1000 epochs.

For this second experiment, two sample sets were sdected usng dratified random
sampling based on the reference image (ground truth), which was generated in the same scde
and projection system as the remotely sensed data. Each sample has dso 120 patterns per
class (totd 720). One sample st was used to training the classfiers and the another
independent sample set were reserved to ng the accuracy of the classfication.
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4.2 Accuracy Assessment

In order to perform a systemdtic investigation of the relaive (improvement of accuracy) cost
involved in the incorporation of the tempora dimenson into the crop dassficatiion process,
dandard accuracy messures derived from a confuson matrix were computed, usng an
independent test data set based on the Field Daa Printouts. The measures based on the
confuson matrix were overal accuracy, individud class accuracy, producer's accuracy and
user’s accuracy. The calculations associated with these measures are described in standard
textbooks (e.g., Mather, 1999). The Kappa coefficient, conditiona Kappa for each class, and
tes Z datidics, dl of them widdy used daidtics derived from the contingency meatrix, were
also computed (Congalton and Green, 1999).

In addition, a parwise test ddidic for evauaing the dgnificance of the dasdfiers
(represented here by their respective confuson matrices), was caculated utilizing the Kappa
coefficients. These results ae summarized in form of a significance matrix, in which the
mgor diagond dements indicate if the respective classfication result is meaningful. In this
single confuson matrix case, the Z vaue can be computed using the formulaz = ka/var(Ka) ,

where Z is sandardized and normaly distributed and var is the large sample variance of the
Kappa coefficient K. If Z 3 Z 42 the dasdfication is dgnificant better than a random

classfication, where a/2 is the confidence levd of the two-talled Z test and the degrees of
freedom are assumed to be infinity. On the other hand, the off diagond eements give an
indication, agan if Z 3 Zy/,, tha the two independent classfiers are Sgnificantly different.
The formula used to test for dSgnificance of the difference between the two independent
Kappa coefficients is. Z =|Ka, - Ka,| / /var(Ka,) +var(Ka,) , where the Ka; and Ka, are the two

Kappa coefficients in comparison (Congalton and Green, 1999).

5. Results and Discussions

Classfication accuracies for Sx agricultura crops usng the sx multispectrd bands of a
dngle-date TM Landsat image, Polynomia Trend Surface (PTS) and Collocation as input
features into three supervised dasdfication dgorithms - maximum likdihood (ML), atificd
neural networks (ANN) and artificia neurad network texture (ANNT) are presented in Table
1. Individud classfication accuracy for each crop (Conditiond Kagppa * 100), overdl
accuracy, the vadue of the Kappa coefficients and their variances, and tet Z datigtic are
reported in this table. These accuracies were caculated from an independent dataset (720
patterns). The pixels received the labd of the output class having the highest probaiility.

As the absolute vaue of the test Z datidtic is grester than criticd vaue of 1.96, dl the
classfication results are ggnificant better than a random classfication a the 95% confidence
level. Moreover, it is noteworthy that the level of accuracy was gradudly improved by
employing to the dngle-date Landsat image the different classfiers ML (72.9%), ANN
(77.6%) and ANNT (81.7%) respectively. However, the overdl performance levd atained
with the features generated usng the STRS (i.e, the PTS and Collocation coefficients) as
input features into a ML classifies were consderably greater (by 5.7%) than the ones obtained
by a dngle-date image. Oddly falow is the only individua category for which the accuracy
was decreased using PTS and Collocation festures.

The lower peformance achieved with ML classfier usng only the TM multigoectra
bands is believed to be due in part to a nontlinear separability of the classes under study and
to a magnitude of training data set incondstent with the design properties and assumptions of
the supervised maximum likelihood agorithms. Moreover, for some of the crops (eg., sugar
beet and potatoes, or onions and peas) the multispectra profiles for that date are not very well
separated. Even so, the neurd modds produce a satisfactory performance on the same data
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set. Furthermore, the separability of the classes are considerable improved when the locdl
goatid variance of individud pixels is implicitly taken as input into the neurad network mode
by employing awidows 3 x 3 asimplemented in the ANNT agorithm.

Table 1. Classification accuracies for six agricultural crops using Single-Date LANDSAT Image,
Polynomial Trend Surface (PTS) and Collocation (COL)) and three classification algorithms -
maximum likelihood (ML), artificial neural networks (ANN) and artificial neural network texture
(ANNT). Thetable showsindividual classification accuracy for each crop (Conditional Kappa* 100),
overall accuracy, the value of the Kappa coefficients and their variances, and test Z statistic. If the
absolute value of the test Z statistic is greater than 1.96, the result is significant better than arandom
classification at the 95% confidence level. T hese accuracies were calculated from an independent
dataset test (720 patterns).

INTERPO. LANDSAT (27/06/54) STRS
CLASMET ML ANN ANNT PTS ML COL-ML
Potatoes 645 66.8 719 959 94.9
Sugar Beet 53.8 579 586 738 753
Wheat 70.9 756 955 893 923
Fallow 80.4 818 79.7 70.8 633
Onions 84.9 89.7 88.0 95.9 978
Peas 535 679 803 93.0 100.0
OVERALL(%) | 729 776 817 874 872
Kappa 0.675 0.732 0.780 0.848 0.847
Variance 0.000394 | 0.000347 | 0.000299 | 0.000219 0.000222
z 13.99 39.28 45.09 5727 56.88

Table 2 provides the computed Z vaues for a pairwise datigica test in order to check
how dgnificat ae the improvements on the classfication accuracy. The classficaion
accuracy obtained usng the STRS approach (PTS and Collocation usng ML agorithm) were
found to be dgnificantly improved in reaion to the individud dassfiers ML, ANN and
ANNT, in which only a multigpectrd sngle-date image was used as discriminae variaoles
(see ydlow pair, Z > 1.96 at 95% of confidence level). This demongtrates a need to utilise the
STRS approach if one is to achieve the highest accuracies possible in crop discrimination.
Moreover, there is no sgnificant difference ketween the performance of the ML using PTS or
Collocation coefficient as input features (see blue pair, Z = 0.05 < 1.96). Therefore, it could
be concluded that, for this data set, these two sets of feature variables may work together
because they produce approximady equa dasdfications If two different techniques or
agorithms were being tested and if they were shown to be not sgnificantly different, then it
would be best to use the cheaper, quicker, or more efficient approach.

Table 2. Results of Kappa Analysis for comparison among the classifiers. The table also presents the
Kappa coefficients and variance for each classifier. The Z values (in mgor diagond and off diagona
elements) were computed using formula as describe in subsection 4.2.

CLASSIF
0.675 0.732 0.78 0.848 0.847
AR 0.000394 0.000347 0.000299 0.000219 0.000222
ML

ANN
ANNT

TSA 2.99
COL 2.94

As have been expected the use of neurd network modds dgnificantly overcome the
performance of the ML dasdfier usng a sngle date Landsat TM image. However, the results
indicate that there are no significant differences in performance between the ANN and ANNT
dgorithms (Z = 1.89 < 1.96) a the same confidence levd.
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6. Conclusions

A methodology for dassfying agriculturd crops combining multi-tempora, multi-spectra
and multi-source remotely-sensed data has been shown to be effective in identifying generd
agriculturd crop classes over an area in Eagt Anglia (UK). Classification accuracies in excess
of 87% were achieved, even though parts of some of the images are covered by clouds. The
basc assumption of the method, tha different crops have different spectra-tempora
trgjectories, has been used in earlier studies. However, the methods used to characterize the
gpectral  reflectance changes over a growing season using a Spectrd-tempora  surface
represents a promising new approach, for severa reasons. Fire, the method can ded with
multi-sensor data, as the spectral bands measured a each date do not need to be the same.
Second, data points obscured by clouds can be filtered out throughout the interpolation and
parameterization procedures of the andyticd surfaces. Third, the overdl spectra variation of
a given crop class over the growing season is ceptured by a st of coefficients, which are
fewer in number than the training data pixels and hence produce computationdly more
efficent dassfiers.
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